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Summary

We describe the design and evaluation of a 192-processor
Windows NT cluster for high performance computing
based on the High Performance Virtual Machine (HPVM)
communication suite. While other clusters have been de-
scribed in the literature, building a 58 GFlop/s NT cluster to
be used as a general-purpose production machine for
NCSA required solving new problems. The HPVM soft-
ware meets the challenges represented by the large
number of processors, the peculiarities of the NT operat-
ing system, the need for a production-strength job submis-
sion facility, and the requirement for mainstream program-
ming interfaces. First, HPVM provides users with a collec-
tion of standard APIs like MPI, Shmem, Global Arrays with
supercomputer class performance (13 µs minimum la-
tency, 84 MB/s peak bandwidth for MPI), efficiently deliver-
ing Myrinet’s hardware performance to application pro-
grams. Second, HPVM provides cluster management and
scheduling (through integration with Platform Comput-
ing’s LSF). Finally, HPVM addresses Windows NT’s re-
mote access problem, providing convenient remote ac-
cess and job control (through a graphical Java-applet
front-end). Given the production nature of the cluster, the
performance characterization is largely based on a sam-
ple of the NCSA scientific applications the machine will be
running. The side-by-side comparison with other present-
generation NCSA supercomputers shows the cluster to be
within a factor of 2 to 4 of the SGI Origin 2000 and Cray
T3E performance at a fraction of the cost. The inherent
scalability of the cluster design produces a comparable or
better speedup than the Origin 2000 despite a limitation in
the HPVM flow control mechanism.

1 Introduction

The advent of “killer micros” and “killer networks” is
enabling clustered commodity machines to compete with
supercomputers in aggregate performance. Many super-
computers today are microprocessor-based (Silicon
Graphics, 1996; Scott, 1996; IBM, 1995; Cray Research,
1993; Sun Microsystems, 1997) because such microproc-
essors deliver instruction and floating point processing
rates in excess of 1 billion operations per second. In addi-
tion, emerging high-speed networks (American National
Standards Institute, 1987) provide the aggregate capabil-
ity for supercomputing performance. While the develop-
ment of these technologies has long been anticipated,
their potential impact has been accentuated by the devel-
opment of new communication technology described
below.

Over the past 4 years, the research community has pro-
duced dramatic progress in delivering hardware commu-
nication performance to applications (Fast Messages
[FM] [Pakin, Karamcheti, and Chien, 1997]; Active Mes-
sages [AM] [Chun, Mainwaring, and Culler, 1997]; U-
Net [von Eicken et al., 1995]; VMMC-2 [Dubnicki et al.,
1997]; PM [Tezuka, Hori, and Ishikawa, 1996]; BIP
[Prylli and Tourancheau, 1997]; MINI [Hady, Minnich,
and Burns, 1994]; and Osiris [Druschel, Peterson, and
Davie, 1994]). These efforts have forged a consensus on
core requirements for network interfaces to deliver high
communication performance to application programs.
This consensus includes the following key features,
which have recently been incorporated in the Intel/Com-
paq/Microsoft standard for cluster interfaces—the Vir-
tual Interface Architecture (1997a).
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• user-level protected network access,
• hardware support for gather-scatter,
• early demultiplexing of incoming traffic, and
• lightweight protocols.

Challenges to building a large cluster, particularly one
based on PCs and Windows NT include system selection,
integration, delivering communication performance,
cluster scheduling and management, and remote access.
Our cluster is based on technology from the High Per-
formance Virtual Machines (HPVM) project,1 which pro-
vides

• High Performance Communication: 10µs latency and
90 MB/s bandwidth employingFast Messagesto im-
plement MPI, Global Arrays, Shmem Put/get

• Management and Scheduling: Flexible scheduling,
system monitoring, and job monitoring using Platform
Computing’s Load Sharing Facility

• Remote Access: Job submission, monitoring, and con-
trol of jobs via a Java applet front-end, which runs on
any Java-enabled system

Using these technologies, we built a 192-processor
cluster, employing dual-processor 300 MHz Pentium II
PCs and 160 MB/s Myrinet. The resulting 58 GFlops sys-
tem has 45 GB of DRAM, 1.6 GB/s of bisection band-
width, and 400 GB of disk storage. The cluster is a Na-
tional Computational Science Alliance (NCSA) project
built in collaboration by the Concurrent Systems Archi-
tecture Group (CSAG) and the NCSA. It was integrated in
6 weeks, though it exploited a much longer chain of tech-
nology developed in FM and HPVM, and was demon-
strated at the Alliance ‘98 meeting on April 27, 1998. It
went into production at NCSA in fall 1998 in time to be
demonstrated at Supercomputing ‘98: at the Alliance
booth, the NT cluster located in Urbana was used to per-
form simulations of Einstein’s general relativity theory
using Cactus and to perform two-dimensional Navier
Stokes calculations using AS-PCG achieving 6.9 Gflops
on 128 of the processors. Because of the success of the
project, a follow-on cluster of 512 processors is planned
for late 1999.

Several aspects set apart this cluster from a number of
similar projects. The first is the use of Microsoft Windows
NT 4.02, an operating system with 30 million installed
units but not traditionally associated with high perform-
ance computing and clusters. The second is the scalability
analysis of a complete stack of communication software

layers (from the network interface card firmware all the
way up to MPI) over a two-orders-of-magnitude range in
the number of processors and machines (1 to 192, 1 to 96,
respectively). Finally, the cluster was built to serve as a
general-purpose production machine in a national super-
computing center rather than a research prototype, target-
ing high-end applications with floating point perform-
ance, core memory, and bisection bandwidth require-
ments in excess of, respectively, 10 Gflops, 10 GB RAM,
and 1 GB/s.

We pioneered the use of Windows NT because we
sought to extend the notion of commodity cluster to the
software environment seen by the users. None of the other
inexpensive commodity operating systems available for
the Intel platform can compete with NTs abundance of
tools and applications, degree of industrial acceptance,
and amount of investments for support and development.
And most important, the pervasiveness of the Windows
user interface eases familiarization and acceptance by
new users. We believe this to be a relevant concern as
clusters of PC are putting high performance computing
within reach of new scores of industrial and commercial
users.

The contributions of this paper include lessons learned
from building and evaluating such a large cluster.

First, the use of the cluster as a production machine re-
quired that adequate cluster management and scheduling
functionalities had to be built on top of NT. This task was
complicated by the desktop-centric nature of NT. By inte-
grating a commercial-strength product like Platform
Computing’s LSF into HPVM, we were able to achieve
the advanced level of service required with a modest ef-
fort. Over the course of a long and productive interaction
with the HPVM team, Platform Computing accrued par-
allel job management services on top of LSF’s native dis-
tributed computing concept.

Second, building the cluster exposed a wealth of soft-
ware scaling issues in the HPVM software, Platform
Computing’s LSF software, and the underlying Windows
NT operating system software. Many of these have been
patched, some have been permanently fixed, but all of
these are documented in this paper.

Third, the performance of the cluster itself is interest-
ing, both microscopically and macroscopically, and we
study and document the performance of the overall sys-
tem both on microbenchmarks and on a sample of the
cluster’s planned workload of scientific applications. De-
pending on the application, the cluster is within a factor of
2 to 4 from SGI Origin 2000 and Cray T3E performance,
with overall comparable or better scalability. While
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achieving comparable absolute performance will require
Intel processors to become twice as fast in terms of float-
ing point performance, the cluster is already at an advan-
tage in terms of price/performance.

Finally, the intention of the authors, as well as of both
the HPVM project and NCSA, is to disseminate knowl-
edge about building similar clusters, and thus we describe
our experience in building the cluster—problems, snafus,
and gotchas.

The rest of the paper is organized as follows. Section 2
describes the background technologies that are exploited
in the HPVM cluster. In Section 3, the hardware and soft-
ware in the cluster are described in detail. Basic system
microbenchmarks and related performance figures are
found in Section 4. Cluster performance on application
programs is also presented in Section 4. Section 5 ana-
lyzes the results and discusses our experience in building
the cluster. Finally, Section 7 concludes the paper and
presents the future developments in progress.

2 Background

Commodity cluster computing has been an active area
of research since well before the advent of high perform-
ance interconnects. There is an obvious trade-off between
application granularity and communication performance,
on one side, and between communication performance
and cost, on the other side. Different approaches to cluster
computing have explored different segments along the
axes of cost and of degree of generality.

The idea of tapping unused CPU cycles on networked
machines is at the base of idle cycle scavenging systems
such as Condor (Litzkow, Livny, and Mutka, 1988) and
Legion (Lewis and Grimshaw, 1995). These systems
transparently schedule applications, or application com-
ponents, on machines detected to be in an idle state. In
these kinds of systems, application execution is subjected
to available space/available time constraint in exchange
for a zero-cost source of computing power.

The simultaneous reduction in PC price and increase
in x86 processor performance turned the notion of dedi-
cated clusters into something economically feasible. The
reliance of Beowulf clusters (Becker et al., 1995) on ba-
sic, well-established Fast Ethernet technology represents
the lowest cost version of the dedicated cluster approach.
By embracing the use of legacy protocols with their inher-
ent latency/bandwidth limitations, the Beowulf approach
is better suited to large-grained applications. The Beo-
wulf concept emphasizes performance/price ratio over
generality of use.
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The advent of fast interconnect technologies (Ameri-
can National Standards Institute, 1987; Anderson and
Cornelius, 1992; Boden et al., 1995; Garcia and Watson,
1997; IEEE Std., 1993) has changed the role of cluster ar-
chitectures—from machines for coarse granularity appli-
cations to inexpensive general purpose parallel comput-
ers. A substantial amount of research efforts have been
directed at the problem of delivering communication per-
formance to applications (FM [Pakin, Karamcheti, and
Chien, 1997]; AM [Chun, Mainwaring, and Culler,
1997]; U-Net [von Eicken et al., 1995]; VMMC-2 [Dub-
nicki et al., 1997]; PM [Tezuka, Hori, and Ishikawa,
1996]; BIP [Prylli and Tourancheau, 1997]; MINI [Hady,
Minnich, and Burns, 1994]; and Osiris [Druschel, Peter-
son, and Davie, 1994]).

Some of these and other efforts have also produced
large-scale clusters. In the Berkeley NOW project cluster,
a Myrinet interconnect links together 104 Ultra SPARC
workstations running communication software based on
AM (http://now.cs.berkeley.edu). The Real World Com-
puting Partnership’s PM effort has produced the PC Clus-
ter II consisting of 64 (128 since Spring 1998) 200 MHz
Pentium Pro interconnected by a Myrinet network and
running Linux (http://www.rwcp.or.jp/home-E.html). In
the Netherlands, the DAS initiative links clusters in four
universities with a ATM WAN as a research testbed for
parallel programming and wide area distributed comput-
ing; the larger cluster at the Vrije Universiteit of Amster-
dam is built of 128 200 MHz Pentium Pro interconnected
by a Myrinet network and running BSD/OS (http://www.
cs.vu.nl/~bal/das.html).

The HPVM research project has focused on crucial as-
pects of the design of high performance messaging layers
such as the trade-offs between protocol processing over-
head and the functionalities exposed in the programming
interface. The key design decisions taken for the original
FM (Pakin, Lauria, and Chien, 1995) implementation
provided key communication services while retaining
microsecond-level overhead, and over the course of two
more releases led to the present 9µs minimum latency and
92 MB/s peak bandwidth of HPVM. Since its first release
in spring 1995, FM has been used in numerous other re-
search projects exploring different areas of high perform-
ance communication. The implementation of the higher-
level APIs on top of FM (MPI [Lauria and Chien, 1997];
Global Arrays, Shmem [Giannini and Chien, 1998])
turned into a study on efficient software layering (Lauria,
Pakin, and Chien, 1998). FM has been used as a testbed
for research on novel mechanisms for coscheduling on a
network of workstations (Sobalvarro et al., 1998) and on

the introduction of quality-of-service (QoS) guarantees in
a wormhole routing interconnect (Connelly and Chien,
1997). HPVM is available for download on our Web site
at http://www-csag.ucsd.edu.

3 The Machine: HPVM III

Cluster Software. The software is based on the Illi-
nois HPVM technology, which includes Illinois FM3

(Pakin, Lauria, and Chien, 1995) to deliver high band-
width (92 MB/s) with low overhead (a fewµs), and low
latency (< 9µs), achieving a half-power message size of
250 bytes while providing reliable and in-order delivery,
and flow control.

HPVM also includes efficient implementations of
standard scientific computing APIs (MPI [Lauria and
Chien, 1997; Lauria, Pakin, and Chien, 1998]; Global Ar-
rays, Shmem [Giannini and Chien,1998]) atop FM. Per-
formance highlights include 13.3µs minimum latency
and 84.2 MB/s peak bandwidth for MPI-FM, 14.4µs
minimum latency and 76 MB/s peak bandwidth for a
Shmem’s shmem_put operation. These APIs enable the
easy porting and the high performance required to inte-
grate the existing NCSA scientific applications in the
cluster environment.

HPVM provides basic cluster monitoring and schedul-
ing by integrating Platform Computing’s Load-Sharing
Facility (Zhou et al., 1993) and adding a Java front-end
for convenient remote access from any platform support-
ing a Java-enabled browser (Figure 1(a)).

The main component of the front-end is an applet
whose graphical interface displays the list of available
hosts, queues, and currently enqueued jobs (the “HPVM
client” window in Figure 1(b)). Through the menu bar,
other applets can be started, each giving access to the LSF
services providing user authentication, cluster monitor-
ing, and job management. In Figure 1(b), the real-time
monitor applet window is shown (the “HPVM Real-time
Monitor” window), with the list of available node statis-
tics visible in the upper half.

Cluster Hardware. HPVM III comprises 192 300
MHz Pentium II processors in 96 nodes (two-way SMPs),
48 GB of memory (512 MB per node), 384 GB of disk (4
GB per node), 160 MB/s full duplex Myrinet networking
(per node), and 100 Megabit Ethernet. Each machine is
running its copy of Windows NT 4 Server, with the Fast
Ethernet being used for file system sharing and machine
administration. The machines are also connected as
shown in Figure 2 using a collection of Myrinet Octal-8
and Dual-8 switches. A fat-tree topology was chosen for
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being deadlock-free, readily expandable, and reasonably
cost-effective, giving 1.62 GB/s of bisection bandwidth.
The tree is organized in three levels of switches, the low-
est one built of Myrinet octal switches, each connected di-
rectly to 16 nodes (each line in the figure is a dual-link ca-
ble). Given the low routing latency of Myrinet, we found
the exact topology to be less critical than the bisection
bandwidth or the balanced distribution of routes between
switches (HPVM is statically routed).
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Fig. 1 The HPVM front-end
(a) The Java front-end enables access to the cluster from any Java-enabled browser.
(b) The HPVM front-end and real-time monitor applets.The real-time monitor statistics are also displayed in a 2D bargraph format by GLmon,
a small graphical utility developed at NCSA (upper left).

(a)

(b)



The node type and configuration was determined by
extensive testing of a wide range of machines (nine ma-
chines from five vendors), with a focus on evaluating I/O
subsystem performance. Testing targeted the elements
critical for communication performance, namely, mem-
ory bandwidth and I/O performance for both DMA and
PIO transfers. The apparent homogeneity of PC hardware
is illusory, with performance-varying factors of 2 or 3
across different vendors, motherboards, and configura-
tions. For example, we observed variations of 44 to 108
MB/s memory-to-memory copy bandwidth.

We chose the Hewlett-Packard Kayak XU, a dual Pen-
tium II 300 MHz model, as our cluster building block.
This model sustained a single-CPU sustainable memory
copy bandwidth of 108.4 MB/s, a DMA-In/DMA-Out
peak bandwidth of 122.5/120.9 MB/s, and a PIO-
Read/PIO-Write peak bandwidth of 10.6/132.2 MB/s.
The detailed list of measurements for this and other ma-
chines is available on our Web site at http://www-
csag.ucsd.edu/projects/comm/hcl.html.

The PCs occupy five meters of two-meter-high rack-
ing. The 96 machines require approximately 10 kW of
power and cooling. Each keyboard, monitor, and mouse is
shared by 16 machines through a Raritan console switch,
resulting in a large saving on space, energy, cooling, and
on the total cost. The console switch deals with Windows
boot sequences, which require the presence of a keyboard
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and allow access to each machine for system administra-
tion purposes.

Local disks are used for operating system, local pag-
ing, and temporary storage. We are planning a number of
additional PCs to act as fileserver with enhanced storage
performance and capability. A disk imaging utility is be-
ing employed to clone the configuration of a master and
simplify the task of updating communication and system
software.

4 Evaluation

4.1 MICROBENCHMARKS

Microbenchmarks were used to determine the peak
communication performance and the basic limitations of
HPVM. Microbenchmarks involve pairwise and multi-
party communication.

Since HPVM is a cluster of SMPs, the microbench-
marks also explore the impact of different process place-
ments (one or two per node). Critical issues here include
memory, I/O bus, and NIC contention. All the bench-
marks are performed through the MPI interface, using
MPI_Send, MPI_Recv, and MPI_Barrier calls. Table 1
summarizes the results. These and the other results pre-
sented in this section have been measured at the end of
April 1998.

Latency. Latency was measured using the classical re-
peated ping-pong scheme; the result is the median value
of a series of measurements. Figure 3 shows the latency
for processes allocated both on two different nodes and on
the same dual processor node. In the first variant, both
nodes directly connected through an octal switch and
nodes connected by multiple switches (> 4) have been
considered.

The minimum latency for a 0-byte message between
different nodes is 13.3µs for nodes connected through
one octal switch. An additional latency of less than 1 mi-
crosecond is seen between nodes connected through mul-
tiple switches. These numbers are comparable to those
found on current generation supercomputers. For exam-
ple, MPI minimum latency on the T3E is 14µs (Anderson
et al., 1997).

Process allocation makes a difference in latency. In the
dual processor allocation, this is due mainly to the sharing
of the I/O bus and of the LANai for both sending and re-
ceiving. This implies a lesser peak bandwidth (see next
section), which explains the different slope of the two
curves. Note that since bandwidth does not matter for
very short messages, the two curves grow at the same rate
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“Microbenchmarks were used to
determine the peak communication
performance and the basic limitations of
HPVM. . . . Weused them to test and
isolate the contribution to global
performance of individual parts of the
system such as flow control and the route
allocation policies.”

Table 1
Summary of MPI-FM Microbenchmark Results

Test Performance

Point-to-point bandwidth 84.2 MB/s
Point-to-point latency 13.3 µs
Scaling point-to-point bandwidth various,

see Figure 4
192 party barrier 290 µs
Bisection bandwidth 1.62 GB/s



with a higher fixed cost when the dual processor alloca-
tion is used.

Bandwidth. Bandwidth was measured by sending a
sequence of messages in a row and stopping the watch on
the acknowledgment for the last one. The reported result
is the median of several consecutive tests.

In Figure 4(a), bandwidth is shown both for processes
allocated on two different nodes and on the same dual
processor node. The peak bandwidth for the multiple
node case is 84.2 MB/s for 128 Kbytes messages. The
sharp decrease in bandwidth for messages longer than
128 Kbytes is due to cache effects in connection with the
second-level cache. The half-performance message
lengthN 1

2

is 970 bytes, which is less than half the FM
packet size. The bandwidth for the dual processor case is
lower as expected, since the I/O bus and the network inter-
face are shared between the sender and the receiver. As a
reference, the T3E peak bandwidth stands at 260 MB/s
(Anderson et al., 1997).

Scaling Bandwidth. The credit-based flow control
scheme of FM equally allocates an amount of credits to all
processes of a computation. To evaluate the impact of
static credit partitioning as the number of processes in-
creases, we used a test similar to the bandwidth test, in
whichN ≥ 2 processes are spawned instead of two. Pro-
cess 0 and process 1 act as the sender and the receiver of a
standard bandwidth test, while all the other processes are
idle waiting for program termination.
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Fig. 3 Latency between two MPI processes
(a) long messages
(b) short messages



Figure 4(b) shows how the bandwidth varies with the
number of processes for a given message length. Peak
bandwidth decreases by as much as 50% over the entire
range as the number of processes increases. By statically
allocating an equal number of credits to all processes, the
scheme trades simplicity for efficiency in the buffer man-
agement. The impact on application performance will be
discussed later in the paper.

Barrier . We measured the execution time of the
MPI_Barrier operation as a function of the number of pro-
cesses involved. The test, after a preliminary barrier to
synchronize the processes, performsnum_reps of bar-
rier operations in a row.

In Figure 5(a), the barrier completion time is reported
for two allocation schemes, one and two processes per
node. In both cases, the curve increases logarithmically as
expected. We observe a higher completion time when
both the processors in each node are involved. This is
likely due to contention on the I/O bus, which increases
the gap between successive messages.

The absolute performance is remarkable, considering
that, for example, on the Origin 2000 the barrier takes
more than 1 ms to complete on 64 nodes (the T3E
hardware-supported barrier completes in 7µs on 256
nodes). IfN is the number of processes involved, for sin-
gle processor allocation the barrier completion time
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Fig. 4 MPI bandwidth
(a) bandwidth between two MPI processes
(b) dependence of bandwidth on the number of processes



grows as 22 logN µs, while for dual processor allocation
it grows as 31 logN µs.

Bisection Bandwidth. In this test, the bandwidth test
is performed in parallel betweenN/2 pairs of processes al-
located in such a way to saturate the bisection cut. The
present peak value of 1.62 GB/s (Figure 5(b)) is the result
of an improved route allocation policy and an upgraded
interconnect with respect to the initial one used in the
April ‘98 Alliance meeting. We doubled the top half of the
tree to achieve a more balanced topology. This required
modifying the HPVM static routing algorithm, based on
an up*/down* scheme, to handle trees with more than one
root. The up*/down* routing scheme (Schroeder et al.,
1990) works by first computing a breadth-first logical tree
starting from an arbitrary node (ideally the physical root
in case of tree topology) and assigning an “up” and a
“down” direction to each link in the network based on the
computed tree. The scheme then mandates that all legal
routes be composed of zero or more links in the “up” di-
rection, followed by zero or more in the “down” direction.
Such restriction prevents deadlock by avoiding the for-
mation of dependency cycles between links. In our modi-
fied scheme, the “up” and “down” assignment is modified
to accommodate multiple roots. The result is a balanced
allocation of routes across the multiple trees; however, the
use of more than one root makes the scheme potentially
deadlock-prone in nontree topologies.
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Fig. 5 Barrier and bisection bandwidth
(a) barrier completion time
(b) cluster bisection bandwidth



4.2 APPLICATIONS

We present the performance measurements of four ap-
plications taken during the Alliance ‘98 meeting and in
the following months. These applications are also running
on other NCSA supercomputers, allowing a direct com-
parative assessment of the system.

• ZeusMP (Fiedler, 1997) is a computational fluid dy-
namics code in Fortran using MPI developed at the
Laboratory for Computational Astrophysics (Univer-
sity of Illinois at Urbana–Champaign) for the simula-
tion of astrophysical phenomena. ZeusMP solves
problems in three spatial dimensions with a wide vari-
ety of boundary conditions.

• Cactus. The Cactus code is a modular high perform-
ance 3D tool for numerical relativity. Cactus is devel-
oped jointly by researchers at AEI-Potsdam, NCSA,
Washington University, and elsewhere.

• AS-PCG kernel. The AS-PCG is a preconditioned
conjugate gradient method with an additive Schwarz-
Richardson preconditioner for solving linear systems.
It was developed by Danesh Tafti et al. at NCSA.

• QMC kernel. This is a quantum Monte Carlo simula-
tion method developed by the NCSA Condensed Mat-
ter Physics group at NCSA, and it is being used to per-
form studies of electronic structure of molecular and
condensed matter systems.
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Fig. 6 ZeusMP performance
(a) comparison across machines
(b) the effect of a simple improvement in the flow control mechanism—a larger DMA kernel buffer



The applications encompass a wide range of computa-
tion granularity, with ZeusMP representing one extreme
(low granularity) and Cactus the other. ZeusMP (Figure
6(a)) and AS-PCG (Figure 7) were instrumental in evalu-
ating and contrasting scalability. (We could not use fewer
than eight processors in the AS-PCG comparison because
of memory limitations.) The other applications, Cactus
and QMC (Figure 8) provide useful information on the
comparative floating performance of the different archi-
tectures. All the applications are examples of preexisting
scientific codes that required only a modest recompila-
tion effort to run unmodified on the cluster. No particular
tuning was performed on the new platform to get the re-
sults shown.

Depending on the application, performance is between
a factor of 2 (AS-PCG) and of 4 (ZeusMP) lower than the
Origin 2000 and the Cray T3E. With respect to the two
coarse-grained applications, the factor for Cactus is 2.5
and for QMC is 1.8. Contrasting these values against the
latency benchmark results, the conclusion is that the
floating point performance of the nodes accounts for a
large share of the performance gap. The baseline factor of
2 found in application performance is consistent, for ex-
ample, with the SPECfp95 ratings of an Intel 300 MHz
Pentium II motherboard and of the 195 MHz version of
the Origin 2000, respectively, 8.82 and 19.2, as reported
on the SPEC Web site (http://www.spec.org).

The additional factor of 2 seen in some applications is
the effect of the reduced bandwidth produced by the flow
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Fig. 7 AS-PCG performance
(a) absolute performance
(b) speedup



control limitations on bandwidth intensive applications.
We tested this effect using ZeusMP. The graph in Figure
6(b) shows that a 50% increment of the size of the kernel
DMA region from the current value of 2 MB to 3 MB re-
sults in an approximate doubling of performance. The in-
crease to 3 MB adds enough buffering to substantially
flatten the bandwidth curve of Figure 4(b) given the cur-
rent delays in the credit recirculation mechanism. Such
value represents only a modest additional cost in absolute
terms and less than 1% of the physical memory of the ma-
chines.

While extending the size of the DMA region is a practi-
cal solution for the short term, other solutions are under
investigation. For example, we are testing some low-level
optimizations aimed at increasing the efficiency of the
credit circulation in the system and that are showing an
improved flatness of the bandwidth graph of Figure 4(b)
without additional buffering. In another approach, a dy-
namic credit allocation scheme that adapts to the effective
level of communication activity has been proposed
(Canonico, Cristaldi, and Iannello, 1999).

5 Discussion and Lessons

The cluster started working in mid-April, right after
the last PC was plugged in. By using fully functional,
proven-technology building blocks (PCs, Myrinet LAN,
HPVM), we found ourselves comparing performances a
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Fig. 8 Scaling of Cactus and QMC
(a) cactus
(b) QMC



mere 6 weeks after opening the boxes of the last shipment
of PCs. We learned a number of things in the process.

Given the focus of the project on programmability and
standard interfaces, MPI-based applications happened to
be among the first codes to run on the cluster. The effort of
porting Unix applications to Windows NT was less than
anticipated, with a number of annoying minor compiler
incompatibilities taking center stage over differences in
the runtime environments.

Connected to the porting issue is the relatively scarce
availability of optimized standard libraries for scientific
computing under Windows NT. In porting some of the ap-
plications, we had to use our own build of the BLAS and
LAPACK libraries, whereas highly optimized versions
are currently available for other platforms. This problem
is mitigated by the availability of commercial versions
(existing or announced) by a number of vendors, includ-
ing Intel.

The size of the cluster has proved a severe test for all
the software components running on it. As shown above,
our benchmarks revealed a problem within HPVM, the
unsatisfactory scaling of the flow control scheme. By im-
proving on this aspect of the design, we expect to see a
further improvement in the performance scalability of
bandwidth-sensitive applications like ZeusMP.

Scaling problems were not limited to HPVM, but con-
cerned also Windows NT and LSF. For example, we dis-
covered that by default Windows NT cannot handle more
that 64 TCP connections at a time on a single socket.4 In
its first release supporting NT clusters, LSF inherited this
limitation; LSF basic design, in which one remote process
was managed at a time, had been extended for parallel job
execution by simply iterating the startup operations over
all the job’s processes. During the course of two minor re-
leases, LSF managed to fix this and other initial problems,
such as a long startup time over a large number of pro-
cesses and an imperfect trapping of the Ctrl-C signal in
some circumstances.

From a system administration point of view, we found
that Windows NT provides useful tools in some areas,
such as the remote administration of services (the NT
equivalent of Unix daemons), while it is lacking in others,
such as remote registry access. For this and other reasons,
in managing large clusters we found almost indispensable
the use of disk reimaging tools.

6 Related Work

A number of projects focusing on high performance
communication have produced a real prototype. Most ef-
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forts involve either custom network hardware or high per-
formance low-level messaging layers.

High Performance Communication Layers. AM
(von Eicken et al., 1992) has been one of the first realiza-
tions of high performance messaging layers. The AM
project started as a communication library for the CM-5
and has culminated today into the realization of a network
of workstations (NOW). The NOW cluster is composed
of 105 Ultra SPARC 1/170 connected with a Myricom
network (Culler et al., 1997) and running the Solaris oper-
ating system. The network is a variant of the fat-tree to-
pology, like ours. Built on top of AM, the high-level APIs
available on the cluster are MPI and Fast Sockets
(Rodrigues, Anderson, and Culler, 1997), a high perform-
ance version of the Berkeley Socket; MPI achieves a
minimum latency of 36µs and a peak bandwidth of 24.6
MB/s, Fast Sockets, respectively, 60µs and 33 MB/s. A
number of high performance computing benchmarks
have been demonstrated (Culler et al., 1997), including
the fastest disk-to-disk sorting program, and a distributed
Web search engine. An implementation of Split-C has
been realized that uses AM in its runtime support.

Princeton’s SHRIMP project is based on two different
platforms. The first uses network interfaces built as part of
the project, Pentium PCs and an Intel Paragon backplane
as the network switch. In the second platform, Myrinet in-
terfaces and switches are used in place of the custom net-
work fabric. Princeton’s Virtual Memory Mapped Com-
munication (VMMC, VMMC-2) communication
software has been developed on these two platforms
(Dubnicki et al., 1997). A number of small-scale clusters
up to 16 nodes in size have been built. The available high-
level API is an implementation of the Socket library,
achieving 20µs minimum latency and 84 MB/s peak
bandwidth.

In some respects, similar to FM is the Real World
Computing Partnership’s PM (Tezuka, Hori, and Ishi-
kawa, 1996). Like FM, PM runs on clusters of Myrinet-
connected workstations and performs flow control and
buffer management. The main difference with FM is in
the optimistic flow control mechanism, and variable-
sized packets. An implementation of MPI is available
achieving 13µs minimum latency and 98.8 MB/s peak
bandwidth. An implementation of MPC++, a C++ with
extensions for message passing has been realized em-
ploying PM for its runtime support.

Another high performance messaging layer is U-Net
(von Eicken et al., 1995). Developed originally on an

ATM network, it provides buffer management and demul-
tiplexing in hardware but no flow control, and thus data
can be lost due to overflow. Contrary to FM, U-Net and
other messaging layers try to avoid the passage of data
through kernel memory by performing a DMA transfer
directly into the user buffer. The disadvantage of such a
feature is that the user must declare in advance the regions
of memory to be used for communication, so to allow the
library to permanently pin them down.

BIP (Prylli and Tourancheau, 1997) is another messag-
ing layer developed for the Myrinet at the Ecole Normale
Superieure de Lyon. It has a higher level, more traditional
message-passing interface, with both blocking and non-
blocking send/receive primitives. BIP provides high
bandwidth, low latency, unreliable communication, with
an adaptive packet format. It has been specifically de-
signed to support standard message-passing libraries
such as MPI and PVM, for which its interface represents a
good match.

Hardware Approaches. An alternative to optimizing
protocol performance in software is to develop hardware
that delivers performance to software by presenting the
system with an interface for which it is easier to optimize
the protocol stack. Hamlyn (Buzzard et al., 1996), Server-
Net (Horst and Garcia, 1997), and hardware based on the
new Virtual Interface Architecture standard (Compaq
Computer, Intel, and Microsoft, 1997b) migrate protec-
tion checks from software to hardware, enabling user-
level programs to access the network directly once the op-
erating system has established a connection between end-
points. Similarly, Memory Channel (Gillett, 1996) and
SHRIMP (Blumrich et al., 1995), each of which exports a
put interface (i.e., an interface in which messages are sent
to a sender-specified address on the receiver), require the
operating system only to establish mappings from be-
tween nodes. All data transfers are performed user-level.

The FM interface is designed to be portable to a variety
of network interfaces, including the new, nontraditional
interfaces just mentioned. FM was originally imple-
mented on the Cray T3D (Cray Research, 1993), which
uses a put/get interface. It currently runs on Myrinet
(Boden et al., 1995), and we are in the process of porting
FM to ServerNet. In all cases, the value added by FM is in
its programmability. By providing flow control and buffer
management—two important features almost never im-
plemented in hardware—FM removes the burden of de-
livering reliable, ordered delivery from higher-level mes-
saging layers and applications.
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7 Summary and Future Work

Leveraging on a number of readily available technolo-
gies we were able to assemble a 192-node cluster in a mat-
ter of weeks. The use of mainstream software interfaces
and operating systems enabled us to quickly demonstrate
a number of HPC scientific applications and to use them
in the testing and evaluation phases. The cluster is cur-
rently in use as a production machine at the NCSA in Ur-
bana.

The direct comparison using stock NCSA scientific
applications demonstrates that HPVM successfully inte-
grates a large number of PCs into a tightly coupled ma-
chine that is within a factor of 2 to 4 of SGI Origin 2000
and Cray T3E performance at a fraction of the cost. The
inherent scalability of the cluster design produces a com-
parable, and in some applications better, speedup than the
Origin 2000.

To achieve these results, we first built standard APIs
(MPI, Global Arrays, Shmem) capable of delivering the
performance of a high-speed interconnect to the applica-
tions (13µs minimum latency, 84 MB/s peak bandwidth
for MPI). We then provided system management services
that were lacking in the NT operating system, and then we
solved a number of scalability issues at different levels in
the software hierarchy.

Since HPVM runs entirely in user space, it was rela-
tively straightforward to port to NT. The appeal of NT is
the affordable and extensive base of available tools, and
the potential for a larger acceptance by a growing number
of nontechnical users. Thanks to the integration with Plat-
form Computing’s LSF, HPVM provides robust remote
job execution and cluster monitoring services.

The major scalability issue that we found came from
the static nature flow control mechanism we had built in
HPVM. In addition to effective short-term remedies—
essentially increase in buffer space and hand tuning of
critical parts of the mechanism, we are considering
longer-term solutions such as a more dynamic scheme.

We believe the HPVM design to have a potential for
decisive performance improvements in the future. The
above changes to the flow control scheme will benefit
bandwidth limited applications; we have reported a dou-
bling of performance for the ZeusMP application when
increasing the size of a critical buffer. Perhaps more im-
portant, the next generation of the Intel CPU architecture
is going to have a decisive improvement in CPU floating
performance, an area in which the cluster is most distant
from the Cray T3E and the SGI Origin 2000.
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NOTES
1. HPVM also provides this for Linux clusters.
2. Windows is a registered trademark of Microsoft in the United States

and other countries.
3. This technology is one of the contributors to emerging Virtual Inter-

face Architecture standard from Intel/Compaq/Microsoft.
4.This limit can be removed by assigning a different value to a compiler

constant in the winsock library.
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