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Abstract

We establish learning rates to the Bayes risk for support vector machines with hinge loss
(L1-SVM’s). Since a theorem of Devroye states that no learning algorithm can learn with a
uniform rate to the Bayes risk for all probability distributions we have to restrict the class
of considered distributions: in order to obtain fast rates we assume a noise condition recently
proposed by Tsybakov and an approximation condition in terms of the distribution and the
reproducing kernel Hilbert space used by the L1-SVM. For Gaussian RBF kernels with varying
widths we propose a geometric noise assumption on the distribution which ensures the approx-
imation condition. This geometric assumption is not in terms of smoothness but describes the
concentration of the marginal distribution near the decision boundary. In particular we are able
to describe nontrivial classes of distributions for which L1-SVM’s using a Gaussian kernel can
learn with almost linear rate.

We use various new and recently introduced techniques for establishing our results: the analy-
sis of the estimation error is based on Talagrand’s concentration inequality and local Rademacher
averages. We furthermore develope a shrinking technique which allows us to control the typical
size of the norm of the L1-SVM solution. It turns out that the above mentioned approxima-
tion assumption has a crucial impact on both the application of Talagrand’s inequality and the
shrinking technique. Moreover, for Gaussian kernels we develope a smoothing technique which
allows us to treat the approximation error in a way directly linked to the classification problem.
Finally, we prove some new bounds on covering numbers related to Gaussian RBF kernels.

1 Introduction

In recent years support vector machines (SVM’s) have been the subject of many theoretical con-
siderations. However, their learning performance on restricted classes of distributions is widely
unknown. In particular, it is unknown under which circumstances SVM’s can guarantee fast rates
with respect to the sample size n for their learning performance. In recent years two concepts have
revolutionized the learning theory community: Tsybakov’s noise exponent for distributions which
gives a sufficient condition for certain theoretical classifiers to learn with a rate faster than n− 1

2 ,
and local Rademacher averages as a powerful new tool for bounding the estimation error of empir-
ical risk minimization (ERM)-like algorithms. The aim of this paper is to apply these concepts to
SVM’s in order to obtain fast rates on their learning performance. Unlike many other works we
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also address the approximation error by introducing a geometric noise condition for distributions.
In particular we are able to describe distributions such that SVM’s with Gaussian kernel learn
almost linearly, i.e. with rate n−1+ε for all ε > 0, even though the Bayes classifier is not in the
corresponding reproducing kernel Hilbert space (RKHS).

Let us formally introduce the statistical classification problem. To this end assume for technical
reasons that X is a compact metric space. We write Y := {−1, 1}. Given a finite training set
T =

(
(x1, y1), . . . , (xn, yn)

) ∈ (X × Y )n the classification task is to predict the label y of a new
sample (x, y). In the standard batch model it is assumed that T is i.i.d. according to an unknown
(Borel) probability measure P on X × Y . Furthermore, the new sample (x, y) is drawn from P
independently of T . Given a classifier C that assigns to every training set T a measurable function
fT : X → R the prediction of C for y is fT (x). In order to “learn” from the samples of T the
decision function fT : X → R should guarantee a small probability for the misclassification of the
example (x, y). Here, misclassification means sign fT (x) �= y where we choose a fixed definition of
sign(0) ∈ {−1, 1}. To make this precise the risk of a measurable function f : X → R is defined by

RP (f) := P
({(x, y) : sign f(x) �= y}) .

The smallest achievable risk RP := inf
{RP (f) | f :X → R measurable

}
is called the Bayes risk of

P . A function attaining this risk is called a Bayes decision function. Obviously, a good classifier
should produce decision functions whose risks are close to the Bayes risk with high probability.
This leads to the definition: a classifier is called universally consistent if

RP (fT ) → RP (1)

in probability for all Borel probability measures P on X ×Y . Since R(fT ) is bounded between RP

and 1 the convergence in (1) holds if and only if

ET∼P nRP (fT ) −RP → 0 . (2)

The next naturally arising question is whether there are classifiers which guarantee a specific rate
of convergence in (1) or (2) for all distributions. Unfortunately, this is impossible by a result of
Devroye (see [13, Thm. 7.2]). However, if one restricts considerations to certain smaller classes of
distributions such rates exist for various classifiers, e.g.:

• Assuming that the conditional probability η(x) := P (1|x) satisfies certain smoothness as-
sumptions Yang showed in [35] that some plug-in rules achieve rates for (2) which are of the
form n−α for some 0 < α < 1/2 depending on the assumed smoothness. He also showed
that these rates are optimal in the sense that no classifier can obtain faster rates under the
proposed smoothness assumptions.

• Recently, for SVM’s with hinge loss (L1-SVM’s) Wu and Zhou [34] established rates for (1)
under the assumption that η is contained in a Sobolev space. In particular, he proved rates
of the form (log n)−p for some p > 0 if the L1-SVM uses a Gaussian kernel.

• It is well know (see [13, Thm. 18.3]) that using structural risk minimization over a sequence
of hypothesis classes with finite VC-dimension every distribution which has a Bayes decision

function in one of the hypothesis classes can be learned with rate
√

log n
n .

• Let P be a noisefree distribution, i.e. RP = 0 and F be a class with finite VC-dimension. If
F contains a Bayes decision function then the rate of convergence of the ERM classifier over
F is n−1.
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Restricting the class of distributions always raises up the question whether it is likely that these
restrictions are met in real world problems. Of course, the assumption of a noisefree distribution
is almost never satisfied in practice. Furthermore, assuming that the conditional probability is
smooth, say k-times continuously differentiable, seems to be very unlikely in real world classification
problems. Therefore, the above listed rates are established for situations which are rarely met in
practice.

Considering the ERM classifier and hypothesis classes F containing a Bayes decision function
there is a large gap in the rates for noise-free and noisy distributions. In [32] Tsybakov closed
this gap: he showed that certain ERM-type classifiers can obtain rates in (2) which are of the

form n− q+1
q+pq+2 , where 0 ≤ q ≤ ∞ is a parameter describing how well the noise is distributed (see

Definition 2.1 in the following section) and 0 < p < 1 measures the complexity of the hypothesis
class. Unlike the above mentioned restrictions on the class of distributions Tsybakov’s condition on
the noise seems to be reasonable for many real world situations since it does not impose any kind of
smoothness. Furthermore, Tsybakov showed that for specific types of distributions having classes
with “smooth” boundaries the above rates are optimal in the sense that there is no classifier that has
uniformly faster rates for these types of probability measures. Unfortunately, the ERM-classifier
he considered is usually hard to implement and in general there exists no efficient algorithm.
Furthermore, his classifier requires substantial knowledge on how to approximate the Bayes decision
rules of the considered distributions. Of course, such knowledge is rarely present in practice.

In this work we will establish rates in (1) for SVM’s and distributions satisfying Tsybakov’s
noise condition for some 0 ≤ q ≤ ∞. Furthermore, these rates also incorporate the approximation
properties of the used RKHS. Namely, we will show in Theorem 2.4 that the L1-SVM can learn
with rate

n
− 4β(q+1)

(2q+pq+4)(1+β)
+ε (3)

for all ε > 0 provided that the regularization sequence (λn) is suitably chosen. Here 0 < p < 2 is the
complexity exponent of the RKHS H (see Definition 2.3) which differs from Tsybakov’s complexity
measure. Furthermore, 0 < β ≤ 1 is the approximation exponent of H and P (see Definition 2.2)
which describes how well H can approximate P with respect to the hinge loss. In the best case
β = 1 which describes RKHS’s containing a Bayes classifier the rate (3) is essentially equal to

n
− 2(q+1)

2q+pq+4 . Furthermore, if the RKHS consists of C∞ functions we may choose p arbitrarily close
to 0. In this case our rate is essentially of the form n− q+1

q+2 . In particular, these considerations hold
for the Gaussian RBF kernels. However, in this case the assumption β = 1 can essentially only
hold for distributions which satisfy η(x) ∈ {0, 1/2, 1} PX -a.s. and have non-touching classes. Of
course, these assumptions are rarely met in practice.

To overcome this problem for Gaussian kernels we treat the width σ > 0 of the kernel as a
second regularization parameter which changes with the sample size. We then introduce a geo-
metric noise condition which allows us to describe nontrivial classes of distributions which can be
well-approximated by Gaussian kernels with changing widths. One amazing aspect of these ap-
proximation rates is the fact that Gaussian kernels poorly approximate smooth functions (cf. [27])
and hence plug-in rules based on Gaussian kernels may have a bad performance under smoothness
assumptions on η. In particular, many types of SVM’s including L2-SVM’s and LS-SVM’s are plug-
in rules and therefore, their approximation properties under smoothness assumptions on η may be
poor if a Gaussian kernel is used. However, L1-SVM’s are not plug-in rules since their decision
functions approximate the Bayes decision function (see [29]). Intuitively, we therefore only need a
condition that measures the cost of approximating the “bump” of the Bayes decision function at the
“decision boundary”. We propose such a (geometric noise) condition parameterized by 0 ≤ α ≤ ∞
which does not measure any smoothness but describes how the noise and the marginal distribution
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is distributed near the “boundary”. Every probability measure satisfies this assumption for α = 0,
and for α = ∞ the condition describes distributions which have classes that are extremely con-
centrated on sets with strictly positive distance. For other α the condition describes intermediate
assumptions.

Assuming such a geometric noise condition with parameter 0 < α ≤ ∞ and using a covering
number bound established in Theorem 2.15 we establish rates for the L1-SVM in Theorem 10.2
which are of the form

n
− 4α(q+1)

(2α+1)(2q+pq+4)+2(2−p)(q+1)
+ε (4)

for all ε > 0 if both (λn) and (σn) are suitably chosen. In these rates 0 < p < 2 is a free parameter.
In particular, for α ≤ q+2

2q we should choose p close to 2 in order to optimize this rate. This yields

rates of the form n− α
2α+1

+ε for all ε > 0. In the other case α > q+2
2q the parameter p should be close

to 0. Then our rate becomes n
− 2α(q+1)

2α(q+2)+3q+4
+ε.

In order to prove our rates we need various techniques: we use Zhang’s [36] inequality (see
equation 15) to bound excess classification risk in terms of excess hinge loss risk. The approximation
rates are obtained by smoothing the Bayes decision function with the integral operator of the
Gaussian RBF kernel—the Gauss-Weierstrass heat operator. This approximation result is unlike
any we have found in the approximation theory literature. Indeed, much is known about the
approximation properties of the Gauss-Weierstrass operator but these results are with respect to
the continuous function norm or Lp spaces with Lebesgue measure (see e.g. [9]). In our situation
we do not need to approximate whole classes of functions; we only need to approximate the Bayes
decision function with respect to the X-marginal measure for which we assume a geometric noise
condition. Although the results in Hush et al. [15] can be used to bound the estimation error, these
rates would be at best n− 1

2 . Consequently, as mentioned at the beginning, the estimation error is
instead treated with concentration inequalities involving local Rademacher averages. This technique
requires a certain “variance bound” which in the case of the L1-SVM depends on Tsybakov’s noise
exponent q. However, unlike for standard ERM-algorithms our variance bound also depends on
the above mentioned approximation exponent. As a result, estimation and approximation error are
intimately interwoven in our bounds and thus no classical decomposition of the learning rate into an
estimation and an approximation part is possible. The situation becomes even more complicated
by another observation: Usually, we can only assume that the objective function of the SVM
optimization problem is minimized over the closed ball 1√

λ
BH of the RKHS. However, it turns out

that assuming a nontrivial approximation exponent α the radius 1√
λ

can be essentially replaced

by λ−α for some α < 1
2 . Since this radius has a crucial impact on the estimation error the latter

depends on the approximation exponent because of two independent reasons. Finally, since we
use the Gaussian kernel width σ as a regularization parameter we require bounds on the covering
numbers of the RKHS in terms of σ. As a consequence, the proofs of our results are rather technical.

The rest of this work is organized as follows: In Section 2 we define the approximation exponent
for RKHS’s, and introduce the noise concepts for distributions. We then present some examples of
classes of distributions which are met by these concepts, and state our main results. Furthermore,
here we establish notation. In Section 3 we consider some structural properties of the introduced
approximation exponent. General bounds for ERM-type classifiers involving local Rademacher
averages are established in Section 4. In the following section we prove “variance bounds” for L1-
SVM’s which depend on both Tsybakov’s noise exponent and the approximation exponent. Local
Rademacher averages for RKHS’s are bounded in Section 5 using certain covering number bounds.
These are used to reformulate our ERM-type classifier result of Section 4. In the following section
we prove the rate (3) for general L1-SVM’s using an iterative shrinking technique for the typical
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size of the norm of the L1-SVM decision function. The remaining parts of the work are devoted to
L1-SVM’s with Gaussian kernels. In Section 8 we prove approximation rates for Gaussian RKHS’s
and distributions that satisfy our geometric noise condition. Lorentz norms of covering numbers of
Gaussian RKHS in terms of the Gaussian width σ are shown in Section 9. In the following section
we prove the rates (4) by the above mentioned shrinking technique.

2 Definitions and Results

For two functions a and b we use the notation a(λ) � b(λ) to mean that there exists a constant
C > 0 such that a(λ) ≤ Cb(λ) over some specified range of values of λ. We also use the notation �
with similar meaning and the notation ∼ when both � and � hold. In addition we use the same
notation for sequences.

Given a probability measure P on X × Y with conditional probability η(x) := P (1|x), x ∈ X
we define the classes of P by X−1 := {x ∈ X : η(x) < 1

2}, X1 := {x ∈ X : η(x) > 1
2}, and

X0 := {x ∈ X : η(x) = 1
2}. It is easy to see that the behaviour of a function f : X → R on X0 has

no influence on its risk RP (f). Therefore, it is sometimes convenient to consider the restriction P̂X

of PX onto X−1∪X1. We sometimes use the notation Pr∗ for outer measures to avoid measurability
considerations.

As already mentioned in the introduction Tsybakov’s noise exponent enables us to obtain fast
classification rates. Let us recall its definition, which can be expressed in terms of Lorentz spaces
Lq,∞ (see e.g. [5] for these spaces):

Definition 2.1 Let 0 ≤ q ≤ ∞ and P be a probability measure on X × Y . We say that P has
Tsybakov noise exponent q if (2η − 1)−1 ∈ Lq,∞(P̂X), i.e. there exists a constant C > 0 such that

PX

(
0 < |2η − 1| ≤ t

) ≤ C · tq (5)

for all t > 0.

All distributions have at least noise exponent 0. In the other extreme case q = ∞ the conditional
probability η is bounded away from 1

2 on X−1 ∪X1. Note that Tsybakov’s noise condition does not
require PX(X0) = 0.

The second important concept describes how well a given RKHS H can approximate a dis-
tribution P . Since this quantity is closely related to the definition of L1-SVM’s we first recall
the latter. To this end let l(y, t) := max{0, 1 − yt}, y ∈ Y , t ∈ R be the hinge loss function.
For a given distribution P on X × Y and a function f : X → R the l-risk of f is defined by
Rl,P (f) := E(x,y)∼P l(y, f(x)). For λ > 0 we denote a minimizer

(f̃P,λ, b̃P,λ) ∈ arg min
(f,b)∈H×R

(
λ‖f‖2

H + Rl,P (f + b)
)

. (6)

If P is an empirical distribution with respect to a training set T we write Rl,T (f) and (f̃T,λ, b̃T,λ).
In order to be able to control the size of the offset we always assume that we choose bP,λ := y∗ if
PX

(
x ∈ X : P (y∗|x) = 1

)
= 1 for some y∗ ∈ Y . Note that for empirical distributions based on T

the latter condition means that all labels of T are equal to y∗. An algorithm that solves (6) with
an empirical distribution is called L1-SVM with offset. Analogously, without the offset we denote
a minimizer

fP,λ ∈ arg min
f∈H

(
λ‖f‖2

H + Rl,P (f)
)

. (7)
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For empirical distributions we again write fT,λ. An algorithm that solves (7) with an empirical
distribution is called L1-SVM without offset. We emphasize that in many theoretical papers only
L1-SVM’s without offset are considered. The reason for this is that the offset often causes serious
technical problems and in some cases such as stability analysis the results are even false for L1-
SVM’s with offset (for an analysis on partially stable learning algorithms including L1-SVM’s with
offset which resolves many of these problems we refer to [15]). However, in practice usually L1-
SVM’s with offset are used and therefore we feel that these algorithms should be considered in
theory, too. As we will see, our techniques can be applied for both variants. The resulting rates
coincide.

Let us return to the approximation properties of H. Let Rl,P := inf{Rl,P (f) | f : X → R}
denote the smallest possible l-risk. Since functions achieving the minimal l-risk occur in many
situations we denote them by fl,P if no confusion regarding the non-uniqueness of this symbol can
be expected. Now, we define the approximation error function of the L1-SVM without offset by

a(λ) := inf
f∈H

(
λ‖f‖2

H + Rl,P (f)
)
−Rl,P , λ ≥ 0 . (8)

Note that for λ > 0, the solution fP,λ of (7) satisfies

a(λ) = λ‖fP,λ‖2
H + Rl,P (fP,λ) −Rl,P .

In addition the obvious analogue of the approximation error function with offset is no greater than
the approximation error function without offset so we restrict our attention to the latter. With the
help of the approximation error function we define

Definition 2.2 Let H be a RKHS over X and P be a probability measure on X ×Y . We say that
H approximates P with exponent 0 ≤ β ≤ 1 if there exists a constant C > 0 such that

a(λ) ≤ Cλβ

for all λ > 0.

Note, that H approximates P with exponent β = 0 for all pairs (H,P ). We will see in the
following section that the other extremal case β = 1 is equivalent to the fact that the minimal l-
risk can be achieved by an element fl,P ∈ H. Because of the specific structure of the approximation
error function values β > 1 are only possible for distributions with PX(X0) = 1. The latter are
uninteresting for classification considerations.

In order to state our first rate for L1-SVM’s we finally need a complexity measure for RKHS’s.
To this end we have to recall some notations. For a subset A ⊂ E of a Banach space E the covering
numbers are defined by

N (A, ε,E) := min
{

n ≥ 1 : ∃x1, . . . , xn ∈ E with A ⊂
n⋃

i=1

(xi + εBE)
}

ε > 0 ,

where BE denotes the closed unit ball of E. Furthermore, for a bounded linear operator S : E → F
between two Banach spaces E and F , the covering numbers are defined by N (S, ε) := N (SBE , ε, F ).

Given a training set T = ((x1, y1), . . . , (xn, yn)) ∈ (X×Y )n we denote the space of all equivalence
classes of functions f : X × Y → R with norm

‖f‖L2(T ) :=

(
1
n

n∑
i=1

∣∣f(xi, yi)
∣∣2)

1
2

(9)
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by L2(T ). In other words, L2(T ) is a L2-space with respect to the empirical measure of T . Note, that
for a function f : X ×Y → R a canonical representant in L2(T ) is the restriction f|T . Furthermore,
we write L2(TX) for the space of all (equivalence classes of) square integrable functions with respect
to the empirical measure of x1, . . . , xn. The complexity measure we need in our considerations is
based on the spaces L2(TX):

Definition 2.3 Let H be a RKHS over X and BH its closed unit ball. We say that H has
complexity exponent 0 < p ≤ 2 if there exists a constant ap > 0 such that

sup
T∈(X×Y )n

logN (BH , ε, L2(TX)) ≤ apε
−p

for all ε > 0.

We will see in Section 9 that every RKHS has complexity exponent p = 2 by using the theory
of absolutely 2-summing operators. However, for fast rates we need complexity exponents which
are strictly smaller than 2. Furthermore, many SVM’s use a parameterized family of RKHS’s. For
such SVM’s the constant ap may play a crucial role. We will see below, that this is in particular
true for SVM’s using a Gaussian RBF kernel.

Let us now consider learning rates for L1-SVM’s. Our first result which establishes rates for
L1-SVM’s with general kernels reads as follows:

Theorem 2.4 Let H be a RKHS of a continuous kernel on X with complexity exponent 0 < p < 2,
and let P be a probability measure on X×Y with Tsybakov noise exponent 0 ≤ q ≤ ∞. Furthermore,

assume that H approximates P with exponent 0 < β ≤ 1. Define λn := n
− 4(q+1)

(2q+pq+4)(1+β) and consider
the L1-SVM without offset. Then for all ε > 0 there is a constant C > 0 such that for all x ≥ 1
and all n ≥ 1 we have

Pr∗
(
T ∈ (X × Y )n : RP (fT,λn) ≤ RP + Cx2n

− 4β(q+1)
(2q+pq+4)(1+β)

+ε
)

≥ 1 − e−x .

Furthermore, the same result holds for the L1-SVM with offset if q > 0.

Remark 2.5 Using a tail bound of the form of Theorem 2.4 one can easily get convergence rates

for (2). In the case of the above theorem these rates have the form n
− 4β(q+1)

(2q+pq+4)(1+β)
+ε for all ε > 0.

In other words the rates are exactly the terms in n in the above tail bounds. This is also true for
the rates of L1-SVM’s using Gaussian RBF kernels which are established below.

Remark 2.6 For brevity’s sake our major aim was to show the best possible rates using our
techniques. Therefore, the above theorem states rates for the L1-SVM under the assumption that
(λn) optimizes the rates of the concentration inequalities we will apply in the proof of the theorem
in Section 7. However, we emphasize, that the techniques of our proofs also give rates if (λn) is
chosen in a different (and thus sub-optimal) way. This is also true for our results on L1-SVM’s
using Gaussian kernels.

Remark 2.7 If we assume a trivial Tsybakov exponent q = 0 we have n
− 4β(q+1)

(2q+pq+4)(1+β) = n− β
1+β .

In other words, the rate of Theorem 2.4 is independent of the complexity exponent whenever H
has a complexity exponent p < 2. We will show at the end of Section 9 that in this case actually
no complexity condition on H is required. Recall that Tsybakov’s rate in [32] is also essentially
independent of the complexity of the used function class if q = 0.
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Remark 2.8 In [32] it is assumed that a Bayes classifier is contained in the base function classes
the algorithm minimizes over. This assumption corresponds to a perfect approximation of P by H,

i.e. β = 1. In this case our rate is essentially of the form n− 2(q+1)
2q+pq+4 . If we rescale the complexity

exponent p from (0, 2) to (0, 1) and write p′ for the new complexity measure this rate becomes

essentially n
− q+1

q+p′q+2 . This is exactly the form of Tsybakov’s result in [32]. However, as far as we
know our complexity measure cannot be compared to Tsybakov’s.

Remark 2.9 By the nature of Theorem 2.4 it suffices to assume that P only satisfies Tsybakov’s
noise assumption for every q′ < q. It also suffices to suppose that H approximates P with exponent
β′ for all β′ < β, and that H has complexity exponent p′ for all p′ > p. As we will see in Section 3
the RKHS H has an approximation exponent β = 1 if and only if H contains a minimizer fl,P of
the l-risk. In particular, if H has approximation exponent β for all β < 1 but not for β = 1 then
H does not contain a minimizer fl,P but Theorem 2.4 can be applied for “β = 1′′. Furthermore,
if the RKHS consists of C∞ functions we can choose p arbitrarily close to 0. If both assumptions
are true, we can hence obtain rates up to n−1 even though H does not contain a minimizer fl,P of
the l-risk. For the Gaussian RBF kernel we can actually describe such distributions P in terms of
their concentration near the “decision boundary” as we will see below.

The rest of this section is devoted to L1-SVM’s using Gaussian RBF kernels, i.e. to kernels
of the form kσ(x, x′) = exp(−σ2‖x − x′‖2

2), x, x′ ∈ X, where X ⊂ R
d is a (compact) subset and

σ > 0 is a free parameter called the width. We sometimes denote the corresponding RKHS by Hσ.
The Gaussian RBF kernels are the most widely used kernels in practice. Of course we can apply
Theorem 2.4 for these kernels, too. However, no smoothness condition on η or fP = sign ◦(2η − 1)
which ensures an approximation of P for some exponent β > 0 are known to us and the results
of [27] indicate that such conditions must be very restrictive. We therefore choose another type of
assumption on the distribution P . To this end we define the following function x �→ τx by

τx :=

⎧⎪⎨
⎪⎩

d(x,X0 ∪ X1), if x ∈ X−1,

d(x,X0 ∪ X−1), if x ∈ X1,

0, otherwise .

(10)

Here, d(x,A) denotes the distance of x to a set A with respect to the Euclidian norm. Roughly
speaking τx measures the distance of x to the “decision boundary”. With the help of this function
we can define the following geometric condition for distributions:

Definition 2.10 Let X ⊂ R
d be compact and P be a probability measure on X ×Y . We say that

P has geometric noise exponent α > 0 if there exists a constant C > 0 such that∫
X

|2η(x) − 1| exp
(
−τ2

x

t

)
PX(dx) ≤ Ct

αd
2 (11)

holds for all t > 0. We say that P has geometric noise exponent α = ∞ if it has geometric noise
exponent α′ for all α′ > 0.

Note, that in the above definition we make neither any kind of smoothness assumption nor do
we assume a condition on PX in terms of absolute continuity with respect to the Lebesgue measure.
Instead, the integral condition (11) describes the concentration of the measure |2η − 1|dPX near
the decision boundary. The less the measure is concentrated in this region the larger the geometric
noise exponent can be chosen. The following examples illustrate this:
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Example 2.11 Since exp(−t) ≤ Cαt−α holds for all t > 0 and a constant Cα > 0 only depending
on α > 0 we easily see that (11) is satisfied whenever(

x �→ τ−1
x

) ∈ Lαd

(|2η − 1|dPX

)
. (12)

Now, let us suppose X0 = ∅ for a moment. In this case τx measures the distance to the class x
does not belong to. In particular, we have

(
x �→ τ−1

x

) ∈ L∞
(|2η − 1|dPX

)
if and only if the two

classes X−1 and X1 have strictly positive distance! If (12) holds for some 0 < α < ∞ then the two
classes may “touch”, i.e. the decision boundary ∂X−1∩∂X1 is nonempty. Using this interpretation
we easily can construct distributions which have geometric noise exponent ∞ and touching classes!
In general for these distributions there is no Bayes classifier in Hσ for any σ > 0.

Note, that from (12) it is obvious that the parameter α in (12) describes the concentration of the
measure |2η−1|dPX near the decision boundary. For the distributions described above |2η−1|dPX

must have a very low concentration near the decision boundary.

The exponential function in (11) appears to be caused by the structure of the Gaussian kernel.
Therefore, one can ask whether Definition 2.10 is taylored to the Gaussian kernel. The above
example shows that condition (11) is actually a very general condition since distributions with
(12) satisfies Definition 2.10. Obviously, (12) has no relation to the Gaussian RBF kernel. We
now describe a regularity condition on η near the decision boundary that can be used to produce
a geometric noise exponent. Like (12) this regularity condition does not have a relation to the
Gaussian RBF kernel.

Definition 2.12 We say that η is Hölder about 1
2 with exponent γ > 0 on X ⊂ R

d if there is a
constant cγ such that

|2η(x) − 1| ≤ cγτγ
x , ∀x ∈ X. (13)

If η is Hölder about 1
2 with exponent γ > 0, the graph of 2η(x) − 1 lies in a multiple of the

envelope defined by τγ
x at the top −τγ

x at the bottom. To be Hölder about 1
2 it is sufficient that η

is Hölder continuous, but it is far from being necessary. A function which is Hölder about 1
2 can

be very irregular away from X0 but cannot jump across X0 discontinuously. In addition a Hölder
continuous function’s exponent must satisfy 0 < γ ≤ 1 where being Hölder about 1

2 only requires
γ > 0. For distributions with Tsybakov noise exponent such that η is Hölder about 1

2 we can bound
the geometric noise exponent:

Theorem 2.13 Let P be a probability measure on X × Y with X ⊂ R
d which has Tsybakov noise

exponent q ≥ 0 such that there exists a conditional probability η(x) = P (y = 1|x) for P which is
Hölder about 1

2 with exponent γ ≥ 0. Then when q ≥ 1, P has geometric noise exponent α = γ q+1
d

and when 0 ≤ q < 1, P has geometric noise exponent α for all α < γ q+1
d .

For distributions having a nontrivial geometric noise exponent we can bound the approximation
error function for Gaussian RBF kernels:

Theorem 2.14 Let X be the closed unit ball of the Euclidian space R
d, and Hσ be the RKHS of

the Gaussian RBF kernel kσ on X with width σ > 0. We write aσ(.) for the approximation error
function with respect to Hσ. Then there is a constant cd depending only on d such that if P has
geometric noise exponent 0 < α < ∞ with constant C, for all λ > 0 and all σ > 0 we have

aσ(λ) ≤ cd

(
σdλ + C(4d)

αd
2 σ−αd

)
. (14)
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In order to let the right hand side of (14) converge to zero it is necessary to assume both
λ → 0 and σ → ∞. An easy consideration shows that the fastest rate of convergence can be
achieved if σ(λ) := λ

− 1
(α+1)d . In this case we have aσ(λ)(λ) ≤ 2Cλ

α
α+1 . Roughly speaking this states

that the family of spaces Hσ(λ) approximates P with exponent α
α+1 . Note, that we can obtain

approximation rates up to linear order in λ for sufficiently benign distributions. The price for this
good approximation property is, however, an increasing complexity of the hypothesis class BHσ(λ)

for σ → ∞, i.e. λ → 0. The following theorem estimates this in terms of the complexity exponent:

Theorem 2.15 Let Hσ be the RKHS of the Gaussian RBF kernel kσ on X and consider the
evaluation map Iσ : Hσ → L2(TX) defined in (19) for an empirical distribution T . Then for all
0 < p ≤ 2 and 0 < δ < 2p

8−4p , there exists a constant cd,δ > 0 such that for all ε > 0 and all σ ≥ 1
we have

sup
T∈Zn

logN (Iσ, ε) ≤ cd,δ σ(1− p
2
)(1+δ)dε−p.

In particular, Theorem 2.15 implies that for all 0 < p ≤ 2 and all δ > 0 there exists a constant
cp,d,δ > 0 such that for all ε > 0 and all σ ≥ 1 we have

sup
T∈Zn

logN (Iσ, ε) ≤ cp,d,δ σ(1− p
2
)(1+δ)dε−p.

Having established both results for the approximation and complexity exponent we can now
formulate our main result for L1-SVM’s using Gaussian RBF kernels:

Theorem 2.16 Let X be the closed unit ball of the Euclidian space R
d, and P be a distribution

on X ×Y with Tsybakov noise exponent 0 ≤ q ≤ ∞ and geometric noise exponent 0 < α < ∞. We
define

λn :=

⎧⎨
⎩n− α+1

2α+1 if α ≤ q+2
2q

n
− 2(α+1)(q+1)

2α(q+2)+3q+4 otherwise ,

and σn := λ
− 1

(α+1)d
n in both cases. Then for all ε > 0 there exists a constant C > 0 such that for all

x ≥ 1 and all n ≥ 1 the L1-SVM without offset and with regularization parameter λn and Gaussian
RBF kernel with width σn satisfies

Pr∗
(
T ∈ (X × Y )n : RP (fT,λn) ≤ RP + Cx2n− α

2α+1
+ε
)

≥ 1 − e−x

if α ≤ q+2
2q and

Pr∗
(
T ∈ (X × Y )n : RP (fT,λn) ≤ RP + Cx2n

− 2α(q+1)
2α(q+2)+3q+4

+ε
)

≥ 1 − e−x

otherwise. If α = ∞ the latter concentration inequality holds if σn = σ is a constant with σ > 2
√

d.
Furthermore, all results hold for the L1-SVM with offset if q > 0.

Most of the remarks made after Theorem 2.4 also apply to the above theorem up to obvious
modifications. In particular this is true for Remark 2.5, Remark 2.6, and Remark 2.9. Furthermore,
Remark 2.8 applies if we assume “p = 0”.
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position to obtain rates to Bayes.

10



3 Approximation error and the approximation error function

We need to control the classification risk RP (f̃T,λ, b̃T,λ) of a classifier built by optimizing a risk
utilizing a loss function L on a training set T . Since the difference between the classifier built on
the training T and that built on the measure P will be handled through the use of concentration
inequalities, to consider the approximation error, we consider the classifier (f̃P,λ, b̃P,λ). Since this
classifier uses a loss function L which is different from classification error we need to consider
the price paid for minimizing L instead of classification error. Indeed, Steinwart [28] shows that
when L is continuous and classification-calibrated that convergence to the minimal L-risk implies
convergence to the Bayes risk. However to obtain rates it is useful to have a more quantitive
estimate. For the hinge loss function l Zhang [36] proves that

RP (f) −RP ≤ 2(Rl,P (f) −Rl,P ) (15)

for all measurable functions f . Zhang proves similar results for other common loss functions and
Bartlett et al. [4] have provided a general framework for such inequalities. Therefore to have a
quantitative bound on the excess classification risk it is sufficient to have a bound on the excess
l-risk. As mentioned in Section 2 the obvious analogue of the approximation error function with
offset is not greater than the approximation error function (8). Namely

inf
(f,b)∈H×R

(
λ‖f‖2

H + Rl,P (f + b)
)
−Rl,P ≤ inf

f∈H

(
λ‖f‖2

H + Rl,P (f)
)
−Rl,P .

Consequently, for all λ > 0 we have

Rl,P (f̃P,λ + b̃P,λ) −Rl,P ≤ λ‖f̃P,λ‖2
H + Rl,P (f̃P,λ + b̃P,λ) −Rl,P ≤ a(λ).

Since a(.) is defined as an infimum, we combine with Zhang’s inequality (15) to produce the following
chain of inequalities

RP (f̃P,λ + b̃P,λ) −RP ≤ 2a(λ) ≤ 2
(
λ‖f‖2

H + Rl,P (f) −Rl,P

)
, ∀f ∈ H (16)

where, as we will see in Section 8, the last inequality allows the use of suboptimal test functions to
bound the approximation error function.

One might guess that the addition of the λ‖f̃P,λ‖2
H changing excess l-risk to the approximation

error function might be too crude, but we show at the end of this section that this is not the
case in most of the situations we consider. Along the way, we discuss the relationship between the
approximation error, the approximation error function, and the map λ → ‖fP,λ‖.

Here X denotes an arbitrary compact metric space, H a RKHS of continuous functions over X,
and P a Borel probability measure on X × Y . Unlike in the other sections of this paper, here L
denotes an arbitrary convex loss function, that is a continuous function L : Y ×R → [0,∞) convex
in its second variable. The corresponding L-risk RL,P (f) of a function f : X → R and its minimal
value RL,P are defined in the obvious way. For simplicity we also assume RL,P (0) = 1. Note that
all the requirements are met by the hinge loss function.

We require the basic theory of RKHS as presented in [12]. Namely any continuous positive
definite kernel k(x, x́) determines a Hilbert space of functions on X by

H := K
1
2
XL2(X)

where K
1
2
X is the unique square root of the integral operator KX : L2(X) → L2(X) defined by

KXf(x) :=
∫

X
k(x, x́)f(x́)dx́ , f ∈ L2(X), x ∈ X ,

11



and L2(X) denotes the L2 space on X with Lebesgue measure. Note that the space L2(TX) defined
below (9) is something else. The norm on H is determined isometrically by

‖K
1
2
Xf‖H = ‖f‖L2(X).

The Hilbert space H consists of continuous functions on X and for f ∈ H and x ∈ X we have

|f(x)| ≤ ‖f‖H

√
k(x, x)

giving rise to the inequality
‖f‖∞ ≤ K‖f‖H

where
K := sup

x∈X

√
k(x, x). (17)

Consequently if we define
JH : H → C(X) (18)

to be the embedding of the RKHS H into the continuous functions we have ‖JH‖ ≤ K. For
universal kernels the range of JH is dense in C(X). For a training set T , consider the evaluation
map C(X) → L2(TX) : f �→ f|TX

defined below (9). This map has norm not greater than 1 and
when composed with JH produces the evaluation map of functions in H:

IH : H → L2(TX). (19)

In Section 9, quantitative estimates on the compactness of IH are provided to bound some
Rademacher averages in Section 5.

Let us now proceed towards analyzing the approximation error function. We use the shorthand
‖ · ‖ for ‖ · ‖H when no confusion should arise. Analogously to the situation for the hinge loss we
can define fP,λ if we replace the l-risk by the L-risk in (7). Furthermore, we define f∗

P,λ through a
set of intermediate minimizers f̂P,λ defined as follows:

f̂P,λ ∈ arg min
‖f‖≤ 1√

λ

RL,P (f) , (20)

Then f∗
P,λ is defined as the unique element f∗

P,λ ∈ arg min‖f‖≤ 1√
λ

RL,P (f) with ‖f∗
P,λ‖ ≤ ‖f̂P,λ‖ for

all f̂P,λ satisfying (20). We need to prove

Lemma 3.1 f∗
P,λ is well defined.

Proof: We first show that the set A of all solutions f̂P,λ of (20) is nonempty. To that end consider
a sequence (fn) such that RL,P (fn) → inf‖f‖≤ 1√

λ

RL,P (f). By the Eberlein-Smulyan theorem we

can assume without loss of generality that there exists an f∗ with ‖f∗‖ ≤ 1√
λ

such that fn → f∗

weakly. Using the fact that weak convergence in RKHS’s imply pointwise convergence Lebesgue’s
theorem then gives

RL,P (fn) → RL,P (f∗)

by the continuity of L providing a solution of (20). We now proceed to show that there is a unique
point in A with minimal norm.
Existence: Let fn ∈ A with

‖fn‖ → inf
f∈A

‖f‖ .

12



Like in the proof that A is not empty, we can conclude the existence of an f∗ ∈ A with

RL,P (fn) → RL,P (f∗).

This shows f∗ ∈ A. Furthermore, we always have

‖f∗‖ ≤ lim inf
n→∞ ‖fn‖ = inf

f∈A
‖f‖ .

Uniqueness: Suppose we have two such elements f and g with f �= g. By convexity we find
1
2(f + g) ∈ arg min‖f‖≤ 1√

λ

RL,P (f). However, H is strictly convex which gives ‖1
2 (f + g)‖ < ‖f‖.

We can now define the approximation error and the approximation error function. In order to
treat non-universal kernels we define the minimal L-risk of functions in H, i.e. the quantity

RL,P,H := inf
f∈H

RL,P (f) .

Then we define

A(λ) := inf
f∈H

(
λ‖f‖2 + RL,P (f)

)
−RL,P,H (21)

A∗(λ) := inf
‖f‖≤ 1√

λ

RL,P (f) −RL,P,H . (22)

Note that for λ > 0 we have

A(λ) = λ‖fP,λ‖2 + RL,P (fP,λ) −RL,P,H

and
A∗(λ) = RL,P (f∗

P,λ) −RL,P,H .

Recall, that for universal kernels RL,P,H = RL,P holds. Therefore, A(.) equals the approximation
error function a(.) in this case. Furthermore, for these kernels, A∗(λ) is the “classical” approxima-
tion error of the hypothesis class 1√

λ
BH .

The following theorem (proven in Section 11) establishes some basic structure of these functions.

Theorem 3.2 Consider the approximation error function A(.) and the approximation error A∗(.).
We have A(0) = A∗(0) = 0, A∗(.) is increasing, and A(.) is increasing, concave, and continuous.
In addition, we have

A∗(λ) ≤ A(λ), ∀λ ≥ 0

and for any function h : (0,∞) → (0,∞) such that A∗(λ) ≤ h(λ) for all λ > 0, we have

A
(
λh(λ)

) ≤ 2h(λ), ∀λ > 0.

As a consequence, we note that A(.) is a concave majorant of A∗(.) and

λA(1) ≤ A(λ) for all 0 < λ ≤ 1,
A(λ) ≤ A(cλ) ≤ cA(λ) if c ≥ 1,
cA(λ) ≤ A(cλ) ≤ A(λ) if 0 < c ≤ 1.

We now turn to the main theorem of this section which establishes a relationship between the
approximation error, the approximation error function, and λ → ‖fP,λ‖. The proof appears in
Section 11.
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Theorem 3.3 The function λ �→ ‖fP,λ‖ is bounded on (0,∞) if and only if A(λ) � λ. In this case
there exists an fL,P,H ∈ H minimizing the L-risk in H and we have λA(1) ≤ A(λ) ≤ λ‖fL,P,H‖2.
Moreover for all α > 0 we have

A∗(λ) � λα if and only if A(λ) � λ
α

α+1 .

If one of the estimates is true we additionally have ‖fP,λ‖2 � λ− 1
α+1 and RL,P (fP,λ)−RL,P � λ

α
α+1 .

Furthermore, if λα+ε � A∗(λ) � λα for some α > 0 and ε ≥ 0 then we have

λ
− α

(α+ε)(α+1) � ‖fP,λ‖2 � λ− 1
α+1 and λ

α+ε
α+1 � RL,P (fP,λ) −RL,P � λ

α
α+1

and hence in particular λ
α+ε
α+1 � A(λ) � λ

α
α+1 .

The above theorem shows that under the assumption that A∗(λ) behaves essentially like λα,
both the excess L-risk and the approximation error function behave essentially like λ

α
α+1 supporting

our claim that not much is lost in going from excess risk to the approximation error function in
(16).

4 Bounding the estimation error of ERM-type classifiers using
local Rademacher averages

In this section we will prove a concentration inequality for ERM-type algorithms which is based
on a variant of Talagrand’s concentration inequality. Our approach is inspired by a similar result
of [4] which uses a complexity measure which is closely related to local Rademacher averages. The
latter have been intensively studied in learning theory in recent years (see [19], [2], and [3]). One
of the main features of the concentration inequalities using local Rademacher averages is that they
all need a so-called “variance bound” of the form EP g2 ≤ c (EP g)α for constants α > 0, c > 0,
and certain functions g. However, for L1-SVM’s and distributions P satisfying Tsybakov’s noise
condition for some 0 < q ≤ ∞ the “sharpest” variance bounds we will be able to show are of
the form EP g2 ≤ c (EP g)α + δ with δ > 0. These bounds will be established in Section 6. We
will also see there that both c and δ depend on the regularization parameter λ. Since the latter
changes with n → ∞ the above mentioned theory must be adapted to this more general situation
in order to obtain a full control over the crucial values c and δ. To this end let F be a class of
bounded measurable functions from Z to R. In order to avoid measurability considerations we
always assume that F is separable with respect to ‖.‖∞. Given a probability measure P on Z we
define the modulus of continuity of F by

ωn(F , ε) := ωP,n(F , ε) := ET∼P n

(
sup
f∈F ,

EP f2≤ε

|EP f − ETf |
)

The modulus of continuity will serve us as a complexity measure in the main theorem of this section.
In Section 5 we will bound ωn(F , ε) by local Rademacher averages which themselves are treated by
certain covering numbers.

Before we state our main result we have to introduce some notation related to ERM-type
algorithms: let F be as above and L : F × Z → [0,∞) be a function. We call L a loss function if
L ◦ f := L(f, .) is measurable for all f ∈ F . Given a probability measure P on Z we denote by
fP,F ∈ F a minimizer of

f �→ RL,P (f) := Ez∼P L(f, z).
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Throughout this paper RL,P (f) is called the L-risk of f . If P is an empirical measure with respect
to T ∈ Zn we write fT,F and RL,T (.) as usual. For simplicity, we assume throughout this section
that fP,F and fT,F do exist. Furthermore, although there may be multiple solutions we use a
single symbol for them whenever no confusion regarding the non-uniqueness of this symbol can
be expected. An algorithm that produces solutions fT,F is called an empirical L-risk minimizer.
Moreover, if F is convex, we say that L is convex if L(., z) is convex for all z ∈ Z. Finally, L
is called line-continuous if for all z ∈ Z and all f, f̂ ∈ F the function t �→ L(tf + (1 − t)f̂ , z) is
continuous on [0, 1]. If F is a vector space then every convex L is line-continuous. Now the main
result of this section reads as follows:

Theorem 4.1 Let F be a convex set of bounded measurable functions from Z to R which is sepa-
rable with respect to ‖.‖∞ and let L : F ×Z → [0,∞) be a convex and line-continuous loss function.
For a probability measure P on Z we define

G :=
{
L ◦ f − L ◦ fP,F : f ∈ F} .

Suppose that there are constants c ≥ 0, 0 < α ≤ 1, δ ≥ 0 and B > 0 with EP g2 ≤ c (EP g)α + δ and
‖g‖∞ ≤ B for all g ∈ G. Let n ≥ 1, x > 0 and ε > 0 with

ε ≥ 10max
{

ωn(G, cεα + δ),

√
δx

n
,

(
4cx
n

) 1
2−α

,
Bx

n

}
.

Then we have
Pr∗
(
T ∈ Zn : RL,P (fT,F ) < RL,P (fP,F) + ε

)
≥ 1 − e−x .

Remark 4.2 Theorem 4.1 has been proved in [4] for δ = 0. In this case its main advantage
compared to the “standard analysis” using uniform deviation bounds is that it can produce rates
faster than n− 1

2 for risk deviations. For a further discussion of this issue we refer to [4]. If δ > 0
the above theorem apparently cannot produce rates faster than n− 1

2 . However, in order to decrease
the approximation error the class F and thus G increases with n for many algorithms. If for such

sequences (Fn) we can show that δn → 0 then the term
√

δx
n no longer prohibits rates faster than

n− 1
2 . As we will see in Section 6 this phenomenon actually occurs for L1-SVM’s and distributions

satisfying Tsybakov’s noise assumption for some exponent q > 0. Namely, we will show that the
rate of δn → 0 and the values of both c and B are determined by the approximation error function.
In particular, in our analysis approximation properties of H will heavily influence the estimation
error. As far as we know such an interweaving of approximation and estimation error has never
been observed or analyzed before.

As already mentioned, the proof of Theorem 4.1 is based on Talagrand’s concentration inequality
in [30] and its refinements in [25], [16], [18]. The below version of this inequality is derived from
Bousquet’s result in [8] using a little trick presented in [3, Lem. 2.5]:

Theorem 4.3 Let P be a probability measure on Z and H be a set of bounded measurable func-
tions from Z to R which is separable with respect to ‖.‖∞ and satisfies EP h = 0 for all h ∈ H.
Furthermore, let b > 0 and τ ≥ 0 be constants with ‖h‖∞ ≤ b and EP h2 ≤ τ for all h ∈ H. Then
for all x ≥ 1 and all n ≥ 1 we have

Pn

(
T ∈ Zn : sup

h∈H
ET h > 3ET ′∼P n sup

h∈H
ET ′h +

√
2xτ

n
+

bx

n

)
≤ e−x .
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This concentration inequality is used to prove the following lemma which is a generalized version
of Lemma 13 in [4]:

Lemma 4.4 Let P be a probability measure on Z and G be a set of bounded measurable functions
from Z to R which is separable with respect to ‖.‖∞ Let c ≥ 0, 0 < α ≤ 1, δ ≥ 0 and B > 0 be
constants with EP g2 ≤ c (EP g)α + δ and ‖g‖∞ ≤ B for all g ∈ G. Furthermore, assume that for all
T ∈ Zn and all ε > 0 for which for some g ∈ G we have

ET g ≤ ε/20 and EP g ≥ ε

there is a g∗ ∈ G which satisfies

ET g∗ ≤ ε/20 and EP g∗ = ε .

Then for all n ≥ 1, x > 0, and all ε > 0 satisfying

ε ≥ 10max
{

ωn(G, cεα + δ),

√
δx

n
,

(
4cx
n

) 1
2−α

,
Bx

n

}

we have

Pr∗
(
T ∈ Zn : for all g ∈ G with ETg ≤ ε/20 we have EP g < ε

)
≥ 1 − e−x .

Proof: We define H := {EP g − g : g ∈ G, EP g = ε}. Obviously, we have EP h = 0, ‖h‖∞ ≤ 2B,
and EP h2 = EP g2 − (EP g)2 ≤ cεα + δ for all h ∈ H. Moreover, our assumption on G yields

Pr∗
(
T ∈ Zn : ∃g ∈ G with ET g ≤ ε/20 and EP g ≥ ε

)
≤ Pr∗

(
T ∈ Zn : ∃g ∈ G with ET g ≤ ε/20 and EP g = ε

)
= Pr∗

(
T ∈ Zn : ∃g ∈ G with EP g − ET g ≥ 19ε/20 and EP g = ε

)
≤ Pn

(
T ∈ Zn : sup

g∈G
EP g=ε

(EP g − ETg) ≥ 19ε/20
)

= Pn
(
T ∈ Zn : sup

h∈H
ET h ≥ 19ε/20

)
.

In order to bound the last probability we will apply Theorem 4.3. To this end we have to show
19ε
20 > 3ET ′∼P n suph∈H ET ′h +

√
2xτ
n + bx

n . Our assumptions on ε imply

ε ≥ 10ET ′∼P n

(
sup
g∈G,

EP g2≤cεα+δ

|EP g − ET ′g|
)

≥ 10ET ′∼P n sup
h∈H

ET ′h . (23)

Furthermore, since 10 ≥ (60
19

)2 and 0 < α ≤ 1 we have

ε ≥ 10
(

4cx
n

) 1
2−α

≥ 10

(
1
10

·
(

60
19

)2
) 1

2−α (4cx
n

) 1
2−α

≥
(

60
19

) 2
2−α

(
4cx
n

) 1
2−α

(24)

If δ ≤ cεα we hence find

ε ≥
(

60
19

) 2
2−α

(
2(cεα + δ)x

εαn

) 1
2−α

.
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This implies 19
60ε ≥

√
2(cεα+δ)x

n . Furthermore, if δ > cεα the assumptions of the theorem shows

ε ≥ 10

√
δx

n
≥ 60

19

√
4δx
n

≥ 60
19

√
2(cεα + δ)x

n
.

Hence we have 19
60ε ≥

√
2(cεα+δ)x

n for all ε satisfying the assumptions of the theorem. Now let
τ := cεα + δ and b := 2B. By (23) and ε ≥ 10Bx

n we then find

19ε
20

≥ 19
6

ET ′∼P n sup
h∈H

ET ′h +

√
2(cεα + δ)x

n
+

19Bx

6n

> 3ET ′∼P n sup
h∈H

ET ′h +

√
2xτ

n
+

bx

n
.

Applying Theorem 4.3 then yields

Pr∗
(
T ∈ Zn : ∃g ∈ G with ET g ≤ ε/20 and EP g ≥ ε

)
≤ Pn

(
T ∈ Zn : sup

h∈H
ET h ≥ 19ε/20

)

≤ Pn

(
T ∈ Zn : sup

h∈H
ETh > 3ET ′∼P n sup

h∈H
ET ′h +

√
2xτ

n
+

bx

n

)
≤ e−x .

With the help of the above lemma we can now prove the main result of this section, that is
Theorem 4.1:

Proof of Theorem 4.1: We want to apply Lemma 4.4 to the class G. It suffices to show the
richness condition on G of Lemma 4.4. To this end let f ∈ F with

ET (L ◦ f − L ◦ fP,F) ≤ ε/20
EP (L ◦ f − L ◦ fP,F) ≥ ε .

For t ∈ [0, 1] we define ft := tf +(1− t)fP,F . Since F is convex we have ft ∈ F for all t ∈ [0, 1]. By
the line-continuity of L and Lebesgue’s theorem we find that the map h : t �→ EP (L ◦ ft −L ◦ fP,F)
which maps from [0, 1] to [0, B] is continuous. Since h(0) = 0 and h(1) ≥ ε there is a t ∈ (0, 1] with

EP (L ◦ ft − L ◦ fP,F) = h(t) = ε

by the intermediate value theorem. Moreover, for this t we have

ET (L ◦ ft − L ◦ fP,F) = ET (L ◦ (tf + (1 − t)fP,F) − L ◦ fP,F)
≤ ET (tL ◦ f + (1 − t)L ◦ fP,F − L ◦ fP,F)
≤ tET (L ◦ f − L ◦ fP,F)
≤ ε/20 .

Now, let ε > 0 with ε ≥ 10max
{
ωn(G, cεα + δ),

(
δx
n

) 1
2 ,
(

4cx
n

) 1
2−α , Bx

n

}
. Then, by Lemma 4.4 we

find that with probability at least 1 − e−x every f ∈ F with ET (L ◦ f − L ◦ fP,F) ≤ ε/20 satisfies
EP (L ◦ f − L ◦ fP,F) < ε. Since we always have

ET (L ◦ fT,F − L ◦ fP,F) ≤ 0 < ε/20

we obtain the assertion.
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5 Bounding the local Rademacher averages

The aim of this section is to bound the modulus of continuity of the class G in Theorem 4.1. To
this end we will first relate the modulus of continuity to local Rademacher averages. Then we will
bound these averages with the help of covering numbers associated to G and reformulate Theorem
4.1.

Let us first recall the definition of (local) Rademacher averages. To this end let F be a class of
bounded measurable functions from Z to R which is separable with respect to ‖.‖∞. Furthermore,
let P be a probability measure on Z and (εi) be a sequence of i.i.d. Rademacher variables (that is,
symmetric {−1, 1}-valued random variables) with respect to some probability measure µ on a set
Ω. The Rademacher average of F is

RadP (F , n) := Rad(F , n) := EP nEµ sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

εif(zi)

∣∣∣∣∣ .

Rademacher averages have been intensively used in empirical process theory. For more information
we refer to [33]. For ε > 0 the local Rademacher average of F is defined by

Rad(F , n, ε) := RadP (F , n, ε) := EP nEµ sup
f∈F ,

EP f2≤ε

∣∣∣∣∣ 1n
n∑

i=1

εif(zi)

∣∣∣∣∣ .

Obviously, the local Rademacher average is a Rademacher average of a restricted function class.
By symmetrization the modulus of continuity can be estimated by the local Rademacher average.
More precisely, we always have (see [33])

ωP,n(F , ε) ≤ 2RadP (F , n, ε) .

Given a real number a > 0 we immediately obtain Rad(aF , n) = aRad(F , n). The following simple
lemma describes how the local Rademacher averages behave under scaling the function class:

Lemma 5.1 For all a > 0 we have

Rad(aF , n, ε) = aRad(F , n, a−2ε) .

Proof: Given a function class G we write Gε := {g : g ∈ G and EP g2 ≤ ε}. Obviously we have

(aF)ε = {f : f ∈ aF and EP f2 ≤ ε} = {af : f ∈ F and EP (af)2 ≤ ε} = aFa−2ε .

Since Rad(F , n, ε) = Rad(Fε, n) we then obtain the assertion.

In the following we estimate Rademacher averages in terms of covering numbers using the path
of [19]. Since we are interested in the arising constants and the extension of Theorem 2.4 described
in Remark 2.7, we add the proofs for the sake of completeness. We begin by recalling an extension
of a theorem of Dudley to subgaussian processes proven in [33]. For the formulation we also refer
to [19]:

Theorem 5.2 There exists a universal constant C > 0 such that for all ‖.‖∞-separable sets F of
measurable functions from Z to [−1, 1], all probability measures P on Z, and all n ≥ 1 we have

Rad(F , n) ≤ C√
n

ET∼P n

δT∫
0

√
logN (F , ε, L2(T ))dε ,

where δT := supf∈F ‖f‖L2(T ).
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The next theorem due to Talagrand [30] estimates the expected diameter of F when interpreted
as a subset of L2(T ):

Theorem 5.3 Let F be a class of measurable functions from Z to [−1, 1] which is separable with
respect to ‖.‖∞ and P be a probability measure on Z. Then we have

ET∼P n sup
f∈F

‖f‖2
L2(T ) ≤ 8Rad(F , n) + sup

f∈F
EP f2 .

With the help of the above theorems we now can establish the following bound on the local
Rademacher averages which is a slight modification of a result in [19]:

Proposition 5.4 Let F be a class of measurable functions from Z to [−1, 1] which is separable
with respect to ‖.‖∞ and let P be a probability measure on Z. Assume there are constants a > 0
and 0 < p < 2 with

sup
T∈Zn

logN (F , ε, L2(T )) ≤ aε−p

for all ε > 0. Then there exists a constant cp > 0 depending only on p with

Rad(F , n, ε) ≤ cp max
{

ε1/2−p/4
(a

n

)1/2
,
(a

n

)2/(2+p)
}

.

Proof: We write Fε := {f : f ∈ F and EP f2 ≤ ε} and δT := supf∈Fε
‖f‖L2(T ). Then applying

Theorem 5.2 and Theorem 5.3 to Fε yields

Rad(F , n, ε) ≤ C√
n

ET∼P n

δT∫
0

√
logN (Fε, δ, L2(T ))dδ

≤ C
√

a√
n

ET∼P n

δT∫
0

δ−p/2dδ

≤ cp
√

a√
n

ET∼P nδ
1−p/2
T

≤ cp
√

a√
n

(
ET∼P nδ2

T

)1/2−p/4

≤ cp
√

a√
n

(
8Rad(F , n, ε) + ε

)1/2−p/4
,

where cp > 0 is a constant depending only on p. If ε ≥ Rad(F , n, ε) we hence find

Rad(F , n, ε) ≤ c′p
√

a ε1/2−p/4n−1/2 ,

where c′p := 91/2−p/4cp. Conversely, if ε < Rad(F , n, ε) we obtain

Rad(F , n, ε) ≤ c′p
√

a√
n

(
Rad(F , n, ε)

)1/2−p/4
.

This implies

Rad(F , n, ε) ≤ c′′p
(a

n

)2/(2+p)
,

where c′′p > 0 is a constant depending only on p.
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Using the above proposition we may now replace the modulus of continuity in Theorem 4.1 by
an assumption on the covering numbers of G. As in Section 4 we assume that all minimizers exist.
Then the corresponding result reads as follows:

Theorem 5.5 Let F be a convex set of bounded measurable functions from Z to R which is sepa-
rable with respect to ‖.‖∞ and L : F × Z → [0,∞) be a convex and line-continuous loss function.
For a probability measure P on Z we define

G :=
{
L ◦ f − L ◦ fP,F : f ∈ F} .

Suppose that there are constants c ≥ 0, 0 < α ≤ 1, δ ≥ 0 and B > 0 with EP g2 ≤ c (EP g)α + δ and
‖g‖∞ ≤ B for all g ∈ G. Furthermore, assume that there are constants a ≥ 1 and 0 < p < 2 with

sup
T∈Zn

logN (B−1G, ε, L2(T )) ≤ aε−p (25)

for all ε > 0. Then there exists a constant cp > 0 depending only on p such that for all n ≥ 1 and
all x > 0 we have

Pr∗
(
T ∈ Zn : RL,P (fT,F ) > RL,P (fP,F) + cp ε(n, a,B, c, δ, x)

)
≤ e−x ,

where

ε(n, a,B, c, δ, x) := B
2p

4−2α+αp c
2−p

4−2α+αp

(a

n

) 2
4−2α+αp + B

p
2 δ

2−p
4

(a

n

) 1
2 + B

(a

n

) 2
2+p

+

√
δx

n
+
(cx

n

) 1
2−α +

Bx

n
.

Proof: By Lemma 5.1 and Proposition 5.4 we find

Rad(G, n, ε) = B Rad(B−1G, n,B−2ε)

≤ cpB max
{

B−1+ p
2 ε

1
2
− p

4

(a

n

) 1
2
,
(a

n

) 2
2+p

}

= cp max
{

B
p
2 ε

1
2
− p

4

(a

n

) 1
2
, B
(a

n

) 2
2+p

}
.

We assume without loss generality that cp ≥ 5. Let ε∗ > 0 be the largest real number that satisfies

ε∗ = 2cpB
p
2
(
c(ε∗)α + δ

) 1
2
− p

4

(a

n

) 1
2
. (26)

Furthermore, let ε > 0 be a such that

ε = 2cp max
{

B
p
2 (cεα + δ)

2−p
4

(a

n

) 1
2
, B
(a

n

) 2
2+p

,

√
δx

n
,

(
4cx
n

) 1
2−α

,
Bx

n

}
.

It is easy to see that both ε and ε∗ exist. Moreover, our above considerations show ε ≥
10max

{
ωn(G, cεα + δ),

(
δx
n

) 1
2 ,
(

4cx
n

) 1
2−α , Bx

n

}
, i.e. ε satisfies the assumptions of Theorem 4.1. In

order to show the assertion it therefore suffices to bound ε from above. To this end let us first
assume that

B
p
2 (cεα + δ)

2−p
4

(a

n

) 1
2 ≥ max

{
B
(a

n

) 2
2+p

,

√
δx

n
,

(
4cx
n

) 1
2−α

,
Bx

n

}
.
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Then we have ε = 2cpB
p
2 (cεα +δ)

2−p
4 ( a

n)
1
2 . Since ε∗ is the largest solution of this equation we hence

find ε ≤ ε∗. This shows that we always have

ε ≤ ε∗ + 2cp

(
B
(a

n

) 2
2+p +

√
δx

n
+
(

4cx
n

) 1
2−α

+
Bx

n

)
.

Hence it suffices to bound ε∗ from above. To this end let us first assume c(ε∗)α ≥ δ. This implies

ε∗ ≤ 4cpB
p
2
(
c · (ε∗)α) 2−p

4

(a

n

) 1
2
.

It is easy to see that this yields

ε∗ ≤ 16c2
pB

2p
4−2α+αp c

2−p
4−2α+αp

(a

n

) 2
4−2α+αp

.

Conversely, if c(ε∗)α < δ holds then we immediately obtain

ε∗ < 4cp B
p
2 δ

2−p
4

(a

n

) 1
2
.

Therefore we can obtain the assertion.

In this work we are mainly interested in L1-SVM’s. Since Theorem 5.5 will be one of the main
tools for the investigation of these algorithms we have to ensure that these classifiers fit into the
framework of Theorem 5.5, i.e. that they are ERM-type algorithms. To this end let H be a RKHS
of a continuous kernel over X, λ > 0, and l : Y ×R → [0,∞) be the hinge loss function. We define

L(f, x, y) := λ‖f‖2
H + l(y, f(x)) (27)

and
L(f, b, x, y) := λ‖f‖2

H + l(y, f(x) + b) (28)

for all f ∈ H, b ∈ R, x ∈ X, and y ∈ Y . Since RL,T (.) and RL,T (., .) coincide with the objective
functions of the L1-SVM formulations we see that the L1-SVM’s implement an empirical L-risk
minimization. Furthermore note, that it is shown in [28] that all needed minimizers exist.

Below we will establish a simple lemma that estimates the covering numbers of the class G in
Theorem 5.5 with the help of the covering numbers of BH . Since for L1-SVM’s the class F depends
on the size of the offset b̃P,λ of the minimizer, we first have to bound this size. This is done in
the following lemma which will be a crucial tool in investigating the L1-SVM’s with offset. This
lemma has been proved in [14] for empirical distributions. Although its generalization to general
probability measures is straight forward we include the proof for completeness.

Lemma 5.6 Let P be a distribution on X ×Y and λ > 0. Then for all possible pairs (f̃P,λ, b̃P,λ) ∈
H × R we have

|b̃P,λ| ≤ ‖f̃P,λ‖∞ + 1 .

Proof: If PX

(
x ∈ X : P (y∗|x) = 1

)
= 1 for some y∗ ∈ Y there is nothing to be proved since

b̃P,λ = y∗ by our assumption on L1-SVM’s mentioned in Section 2. Now let us assume that
b̃P,λ > ‖f̃P,λ‖∞ + 1 and that P is not degenerate in the above way. Then there exists a constant
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δ > 0 such that b̃P,λ > ‖f̃P,λ‖∞ +1+ δ. This implies f̃P,λ(x)+ b̃P,λ > 1+ δ for all x ∈ X. We define
b∗P,λ := b̃P,λ − δ. Obviously, we then find l(1, f̃P,λ(x) + b̃P,λ) = 0 = l(1, f̃P,λ(x) + b∗P,λ) and

l(1, f̃P,λ(x) + b̃P,λ) = 1 + f̃P,λ(x) + b̃P,λ = 1 + f̃P,λ(x) + b∗P,λ + δ = l(−1, f̃P,λ(x) + b∗P,λ) + δ

for all x ∈ X. Therefore we obtain Rl,P (f̃P,λ(x) + b̃P,λ) > Rl,P (f̃P,λ(x) + b∗P,λ) by using the
assumption on P . It is easily seen that this inequality contradicts the definition of (f̃P,λ(x), b̃P,λ).

The proof of the above lemma can be easily generalized to a larger class of loss functions. In
particular for the squared hinge loss function used in L2-SVM’s Lemma 5.6 holds.

Recalling the definition of K in (17), we can state our announced covering number bound.
For brevity’s sake it only treats the case of L1-SVM’s with offset. The other case can be shown
completely analogously.

Lemma 5.7 Let H be a RKHS over X, P be a probability measure on X × Y , λ > 0, and L be
defined by (28). Furthermore, let 1 ≤ γ ≤ λ−1 and

F := {(f, b) ∈ H × R : ‖f‖H ≤ γ and |b| ≤ γK + 1} .

Defining B := 2γK + 2 and

G :=
{
L ◦ (f, b) − L ◦ (fP,F , bP,F ) : (f, b) ∈ F}

then gives ‖g‖∞ ≤ B for all g ∈ G. Here (fP,F , bP,F ) denotes a L-risk minimizer in F . Assume
that there are constants a ≥ 1 and 0 < p < 2 with

sup
T∈Zn

logN (BH , ε, L2(TX)) ≤ aε−p

for all ε > 0. Then there exists a constant cp > 0 depending only on p such that for all ε > 0 we
have

sup
T∈Zn

logN (B−1G, ε, L2(T )
) ≤ cpaε−p .

Proof: Let us write Ĝ :=
{
L ◦ (f, b) : (f, b) ∈ F} and H :=

{
l ◦ (f + b) : (f, b) ∈ F}. We then

have
N (B−1G, ε, L2(T )

)
= N (B−1Ĝ, ε, L2(T )

) ≤ N ([0, λγ] + B−1H, ε, L2(T )
)

using the Lipschitz-continuity of the hinge loss function. By the sub-additivity of the log-covering
numbers we hence find

logN (B−1G, 3ε, L2(T )
) ≤ logN ([0, λγ], ε, R

)
+ logN (B−1H, 2ε, L2(T )

)
≤ log

(1
ε

+ 1
)

+ logN (B−1(F + [−B,B]), 2ε, L2(TX)
)

≤ 2 log
(2

ε
+ 1
)

+ logN (BH , ε, L2(TX)
)
.

From this we easily deduce the assertion.

Note that for γ := λ− 1
2 the above lemma gives covering number bounds for L1-SVM’s by Lemma

5.6. It will turn out in Sections 7 and 10 that in many situations it even can be applied for (slightly
modified) L1-SVM’s if γ is significantly smaller than λ− 1

2 . In order to ensure that the above lemma
is a non-void statement in this case we have to check that the minimizer (fP,F , bP,F ) exists. This
can be shown by an argument based on the weak compactness of closed balls in Hilbert spaces.
Since this argument is only a small modification of the proof for the γ = λ− 1

2 case which was
worked out in [28] we do not provide details here.
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6 Variance bounds for L1-SVM’s

In this section we prove some “variance bounds” in the sense of Theorem 4.1 and Theorem 5.5 for
L1-SVM’s. In the first subsection we establish a variance bound which holds for all distributions P
on X × Y . In the second subsection we will improve this variance bound for probability measures
having some Tsybakov noise exponent q > 0.

6.1 Bounding the variance for L1-SVM’s—the general case

As already announced we will establish variance bounds for L1-SVM’s for general probability mea-
sures in this section. Unfortunately, since our techniques heavily rely on the strict convexity of the
RKHS norm it turns out that they can only be used for L1-SVM’s without offset.

Let λ > 0, H be a RKHS over X, and F ⊂ λ− 1
2 BH . Furthermore, we assume that l denotes—as

usual—the hinge loss and L is defined by (27). We define the “metric”

dx,y(f, g) := 2
√

λ‖f − g‖H + |f(x) − g(x)|
for all (x, y) ∈ X×Y and all f, g ∈ F . Note that L is “pointwise Lipschitz continuous” with respect
to dx,y, i.e. we have ∣∣L(f, x, y) − L(g, x, y)

∣∣ ≤ dx,y(f, g)

for all (x, y) ∈ X × Y and all f, g ∈ F . Our ansatz is a modification of the idea presented in [4]
which uses a modulus of convexity in order to quantify the convexity of the loss function. In our
situation the strict convexity of L is due to the RKHS norm of the regularization term. This is
reflected in the definition of dx,y as well as in the following definition: for ε > 0 the “modulus of
convexity of L” is defined by

δ(ε) := inf
{

L(f, x, y) + L(g, x, y)
2

−L

(
f + g

2
, x, y

)
: (x, y) ∈ X×Y, f, g ∈ F with dx,y(f, g) ≥ ε

}
.

Since L is convex in f it is easy to see that δ(ε) ≥ 0 for all ε > 0. In the next lemma we establish
a much stronger lower estimate of δ(.).

Lemma 6.1 Let 0 < λ < 1 and ε > 0. Then with the above notation we have

δ(ε) ≥ λε2

(4 + 2K)2
.

Proof: Let x ∈ X, y ∈ Y and f, g ∈ F with dx,y(f, g) ≥ ε. Then we find

ε ≤ 2
√

λ‖f − g‖H + |f(x) − g(x)| ≤ (2 + K)‖f − g‖H .

Since l is convex and the norm ‖.‖ of the RKHS satisfies the parallelogram law we also have

L(f, x, y) + L(g, x, y)
2

− L

(
f + g

2
, x, y

)

= λ
‖f‖2 + ‖g‖2

2
− λ

∥∥∥f + g

2

∥∥∥2
+

l(y, f(x)) + l(y, g(x))
2

− l

(
y,

f(x) + g(x)
2

)

≥ λ
∥∥∥f − g

2

∥∥∥2

≥ λε2

(4 + 2K)2
.
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Let us now define a “modulus of continuity” for the L-risk f �→ RL,P (f). To this end we write
dP (f, g) :=

(
E(x,y)∼P d 2

x,y(f, g)
)1/2 for all f, g ∈ F and probability measure P on X × Y . Then we

define

δP (ε) := inf
{RL,P (f) + RL,P (g)

2
−RL,P

(
f + g

2

)
: f, g ∈ F with dP (f, g) ≥ ε

}
.

Again, it is easy to see that δP (ε) ≥ 0 for all ε > 0 by the convexity of L. The next lemma which
is based on Lemma 6.1 significantly improves this:

Lemma 6.2 With the above notations we have

δP (ε) ≥ λε2

(4 + 2K)2

for all 0 < λ < 1, ε > 0, and all distributions P on X × Y .

Proof: Let f and g with dP (f, g) ≥ ε. Then by Lemma 6.1 we find

RL,P (f) + RL,P (g)
2

−RL,P

(
f + g

2

)
= E(x,y)∼P

(
L(f, x, y) + L(g, x, y)

2
− L

(f + g

2
, x, y

))
≥ E(x,y)∼P δ(dx,y(f, g))

≥ λ

(4 + 2K)2
d2

P (f, g)

≥ λε2

(4 + 2K)2
.

Now we can prove the main result of this subsection which states a “variance bound” for the
class G defined in Theorem 4.1 for L1-SVM’s without offset:

Proposition 6.3 Let 0 < λ < 1, H be a RKHS over X, and F ⊂ λ− 1
2 BH . Furthermore, let L be

defined by (27) and P be a probability measure. We write

G :=
{
L ◦ f − L ◦ fP,F : f ∈ F} .

Then for all g ∈ G we have

EP g2 ≤ (4 + 2K)2

2λ
EP g .

Proof: By the definition of the modulus of convexity δP and the definition of fP,F we obtain

RL,P (f) + RL,P (fP,F )
2

≥ RL,P

(
f + fP,F

2

)
+ δP

(
dP (f, fP,F)

)
≥ RL,P (fP,F) + δP

(
dP (f, fP,F)

)
≥ RL,P (fP,F) +

λd2
P (f, fP,F)

(4 + 2K)2

for all f ∈ F . Here, we used Lemma 6.2 in the last inequality. For g := L ◦ f − L ◦ fP,F we hence
have

EP g = RL,P (f) −RL,P (fP,F ) ≥ 2
λd2

P (f, fP,F)
(4 + 2K)2

.
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Furthermore, since L is pointwise Lipschitz-continuous with respect to dx,y we find

EP g2 = EP

(
L ◦ f − L ◦ fP,F

)2 ≤ E(x,y)∼P d 2
x,y(f, fP,F)

)
= d2

P (f, fP,F) .

Remark 6.4 Proposition 6.3 establishes a variance bound of the form EP g2 ≤ c (EP g)α + δ with
α = 1, c = (4+2K)2

2λ , and δ = 0. Recall, that by substituting α by 1 the term ε := ε(n, a,B, c, δ, x)
in Theorem 5.5 becomes

ε(n, a,B, c, δ, x) = B
2p

2+p c
2−p
2+p

(a

n

) 2
2+p + xB

(a

n

) 2
2+p +

cx

n
. (29)

6.2 Bounding the variance for L1-SVM’s—Tsybakov’s noise condition

As we have seen in the previous subsection we always have a variance bound for the L1-SVM in
the sense of Theorem 4.1. Besides the fact that this bound was only established for L1-SVM’s
without offset it appears to be sharp since it has the “optimal” values α = 1 and δ = 0, and
actually this bound will enable us to prove the case q = 0 in Theorem 2.4. However, if we want to
show rates faster than n− 1

2 we need a variance bound which is less sensitive to the regularization
parameter λ. In this subsection we will establish such bounds for underlying distributions P
satisfying Tsybakov’s noise assumption for some exponent q > 0. As already mentioned, it will
turn out that these variance bounds depend on the approximation error function! An additional
benefit of the approach of this subsection is that it can also be used for L1-SVM’s with offset. In
fact besides slightly larger constants the result are the same.

As in the last subsection l denotes the hinge loss. If no confusion can arise we denote a minimizer
of Rl,P by fl,P . For the shape of these minimizers which depend on η := P (1| . ) we refer to [36]
and [29]. We begin with a variance bound for the empirical l-risk minimizer:

Lemma 6.5 Let P be a distribution on X × Y with Tsybakov noise exponent 0 < q ≤ ∞. Then
for all bounded measurable functions f : X → R there exists a minimizer fl,P mapping into [−1, 1]
such that

EP

(
l ◦ f − l ◦ fl,P

)2 ≤ (‖(2η − 1)−1‖q,∞ + 2
) (‖f‖∞ + 1

) q+2
q+1

(
EP

(
l ◦ f − l ◦ fl,P

)) q
q+1

.

Proof: Given a fixed x ∈ X we write p := P (1|x) and t := f(x). We first consider the case
p = 1/2. Let fl,P be a minimizer with fl,P (x) = t if t ∈ [−1, 1], fl,P (x) = 1 if t > 1, and
fl,P (x) = −1 otherwise. Let us show

(
l(1, t) − l(1, fl,P (x))

)2
2

+

(
l(−1, t) − l(−1, fl,P (x))

)2
2

≤ |t|
(

l(1, t) − l(1, fl,P (x))
2

+
l(−1, t) − l(−1, fl,P (x))

2

)
. (30)

Obviously, this estimate is trivially satisfied if t ∈ [−1, 1]. If t > 1 we have l(1, t) = l(1, fl,P (x)) = 0,
l(−1, t) = 1 + t and l(−1, fl,P (x)) = 2. Therefore, (30) reduces to

(t − 1)2

2
≤ |t|

( t − 1
2

)
,
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which is true for all t > 1. The case t < −1 can be shown analogously. Now, let us treat the case
p �= 1/2. We will show

p
(
l(1, t) − l(1, fl,P (x))

)2 + (1 − p)
(
l(−1, t) − l(−1, fl,P (x))

)2
≤

(
|t| + 2

|2p − 1|
)(

p
(
l(1, t) − l(1, fl,P (x))

)
+ (1 − p)

(
l(−1, t) − l(−1, fl,P (x))

))
. (31)

Without loss of generality we may assume p > 1/2. Then we may set fl,P (x) := 1 and thus we
have l(1, fl,P (x)) = 0 and l(−1, fl,P (x)) = 2. Therefore (31) reduces to

p l2(1, t) + (1 − p)
(
l(−1, t) − 2

)2 ≤
(
|t| + 2

2p − 1

)(
p l(1, t) + (1 − p)

(
l(−1, t) − 2

))
. (32)

Let us first consider the case t ∈ [−1, 1]. Since we then have l(1, t) = 1 − t and l(−1, t) = 1 + t we
find

p l2(1, t) + (1 − p)
(
l(−1, t) − 2

)2 = p(1 − t)2 + (1 − p)(t − 1)2 = (1 − t)2

and
p l(1, t) + (1 − p)

(
l(−1, t) − 2

)
= p(1 − t) + (1 − p)(t − 1) = (2p − 1)(1 − t) .

Therefore, (32) reduces to

(1 − t)2 ≤
(
|t| + 2

2p − 1

)
(2p − 1)(1 − t) .

Obviously, the latter inequality is equivalent to 1 − t ≤ (2p − 1)|t| + 2 which is always satisfied for
t ∈ [−1, 1] and p ≥ 1/2. Now let us consider the case t ≤ −1. Since we then have l(1, t) = 1 − t
and l(−1, t) = 0 we find

p l2(1, t) + (1 − p)
(
l(−1, t) − 2

)2 = p(1 − t)2 + 4(1 − p)

and
p l(1, t) + (1 − p)

(
l(−1, t) − 2

)
= p(1 − t) − 2(1 − p) .

Therefore, it suffices to show

p(1 − t)2 + 4(1 − p) ≤
(
−t +

2
2p − 1

)(
p(1 − t) + 2(p − 1)

)
.

It is easy to check that this inequality is equivalent to

4 − 3p ≤ −2p2 − 3p + 2
2p − 1

t +
6p − 4
2p − 1

.

Since 6p−4
2p−1 − 4 + 3p = 6p2−5p

2p−1 we thus have to show

p2(6 − 2t) − p(5 − 3t) − 2t ≥ 0 .

The left hand side is minimal if p = 5−3t
12−4t . Therefore, we obtain

p2(6−2t)−p(5−3t)−2t ≥
(

5 − 3t
12 − 4t

)2

(6−2t)− (5 − 3t)2

12 − 4t
−2t = −(5 − 3t)2

24 − 8t
−2t =

7t2 − 18t − 25
24 − 8t
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and hence it suffices to show 7t2 − 18t − 25 ≥ 0. However, the latter is true for all t ≤ −1 since
t �→ 7t2 − 18t − 25 is decreasing on (−∞,−1]. Now, let us consider the third case t > 1. Since we
then have l(1, t) = 0 and l(−1, t) = 1 + t we find

p l2(1, t) + (1 − p)
(
l(−1, t) − 2

)2 = (1 − p)(t − 1)2

and
p l(1, t) + (1 − p)

(
l(−1, t) − 2

)
= (1 − p)(t − 1) .

Therefore, it suffices to show

t − 1 ≤ t +
2

2p − 1
.

Since this is always true we have proved (32). Furthermore, for p < 1
2 the proof of (31) is completely

analogous and therefore (31) holds. Now, let us write g(y, x) := l(y, f(x)) − l(y, fl,P (x)), h1(x) :=
η(x)g(1, x)+ (1−η(x))g(−1, x), and h2(x) := η(x)g2(1, x)+ (1−η(x))g2(−1, x). Then (30) implies
h2(x) ≤ ‖f‖∞h1(x) for all x with η(x) = 1/2. Similarly, (31) yields h2(x) ≤ (‖f‖∞+ 2

|2η(x)−1|
)
h1(x)

for all x with η(x) �= 1/2. Hence for t ≥ 1 we find

EP g2 =
∫

|2η−1|−1<t

h2 dPX +
∫

t≤|2η−1|−1<∞

h2 dPX +
∫

η= 1
2

h2 dPX

≤ (‖f‖∞ + 2t
) ∫
|2η−1|−1<t

h1 dPX +
∫

t≤|2η−1|−1<∞

h2 dPX + ‖f‖∞
∫

η= 1
2

h1 dPX

≤ 2
(‖f‖∞ + t

)
EP g + (‖f‖∞ + 1)2P̂X

(
|2η − 1|−1 ≥ t

)
≤ 2 t (‖f‖∞ + 1)EP g + (‖f‖∞ + 1)2‖(2η − 1)−1‖q,∞ t−q .

Now let t be defined by tq+1 := (‖f‖∞ + 1)(EP g)−1. Since EP g ≤ ‖f‖∞ + 1 we have t ≥ 1 and
hence the above estimate yields the assertion.

With the help of Lemma 6.5 we can now show a variance bound for the L1-SVM. For brevity’s
sake we only state and prove the result for L1-SVM’s with offset. Therefore, the loss function L is
defined as in (28). Considering the proof it is immediately clear that the following variance bound
also holds for the L1-SVM without offset.

Proposition 6.6 Let P be a distribution on X × Y with Tsybakov noise exponent 0 < q ≤ ∞.
Define C := 16+8‖(2η−1)−1‖q,∞. Furthermore, let λ > 0 and 0 < γ ≤ λ−1/2 such that f̃P,λ ∈ γBH .
Then for all f ∈ γBH and all b ∈ R with |b| ≤ Kγ + 1 we have

E
(
L ◦ (f, b) − L ◦ (f̃P,λ, b̃P,λ)

)2 ≤ 4C(Kγ + 1)
q+2
q+1

(
E
(
L ◦ (f, b) − L ◦ (f̃P,λ, b̃P,λ)

)) q
q+1

+8C(Kγ + 1)
q+2
q+1 a

q
q+1 (λ) .

Proof: Let us define Ĉ := Kγ + 1. By Lemma 5.6 we then see |b̃P,λ| ≤ Ĉ. For fixed f + b we
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choose a minimizer fl,P according to Lemma 6.5. We first observe

E
(
L ◦ (f, b) − L ◦ (f̃P,λ, b̃P,λ)

)2
= E

(
λ‖f‖2 − λ‖f̃P,λ‖2 + l ◦ (f + b) − l ◦ (f̃P,λ + b̃P,λ)

)2
≤ 2E

(
λ‖f‖2 − λ‖f̃P,λ‖2)2 + 2E

(
l ◦ (f + b) − l ◦ (f̃P,λ + b̃P,λ)

)2
≤ 2λ2‖f‖4 + 2λ2‖f̃P,λ‖4 + 2E

(
l ◦ (f + b) − l ◦ (f̃P,λ + b̃P,λ)

)2
= 2E

(
l ◦ (f + b) − l ◦ fl,P + l ◦ fl,P − l ◦ (f̃P,λ + b̃P,λ)

)2 + 2λ2‖f‖4 + 2λ2‖f̃P,λ‖4

≤ 4E
(
l ◦ (f + b) − l ◦ fl,P

)2 + 4E
(
l ◦ fl,P − l ◦ (f̃P,λ + b̃P,λ)

)2 + 2λ2‖f‖4 + 2λ2‖f̃P,λ‖4 .

By Lemma 6.5 and ap + bp ≤ 2(a + b)p for all a, b ≥ 0, 0 < p ≤ 1 we find

E
(
l ◦ (f + b) − l ◦ fl,P

)2 + E
(
l ◦ fl,P − l ◦ (f̃P,λ + b̃P,λ)

)2
≤ CĈ

q+2
q+1

(
E
(
l ◦ (f + b) − l ◦ fl,P

)
+ E

(
l ◦ (f̃P,λ + b̃P,λ) − l ◦ fl,P

)) q
q+1

.

Since λ2‖f‖4 ≤ 1 and λ2‖f̃P,λ‖4 ≤ 1 we hence obtain

E
(
L◦(f, b) − L◦(f̃P,λ, b̃P,λ)

)2
≤ 4CĈ

q+2
q+1

(
E
(
l◦(f + b) − l◦fl,P

)
+ E

(
l◦(f̃P,λ + b̃P,λ) − l◦fl,P

)) q
q+1 + 2λ2‖f‖4 + 2λ2‖f̃P,λ‖4

≤ 4CĈ
q+2
q+1

(
E
(
l◦(f +b) − l◦fl,P

)
+ E

(
l◦(f̃P,λ+b̃P,λ) − l◦fl,P

)) q
q+1 + 4

(
λ2‖f‖4 + λ2‖f̃P,λ‖4

) q
q+1

≤ 4CĈ
q+2
q+1

(
E
(
l◦(f + b) − l◦fl,P

)
+ E

(
l◦(f̃P,λ + b̃P,λ) − l◦fl,P

)
+ λ2‖f‖4 + λ2‖f̃P,λ‖4

) q
q+1

≤ 4CĈ
q+2
q+1

(
E
(
l◦(f +b) − l◦(f̃P,λ+b̃P,λ)

)
+ 2E

(
l◦(f̃P,λ+b̃P,λ) − l◦fl,P

)
+ λ‖f‖2 + λ‖f̃P,λ‖2

) q
q+1

≤ 4CĈ
q+2
q+1

(
E
(
L◦(f + b) − L◦(f̃P,λ+b̃P,λ)

)
+ 2E

(
l◦(f̃P,λ+b̃P,λ) − l◦fl,P

)
+ 2λ‖f̃P,λ‖2

) q
q+1

≤ 4CĈ
q+2
q+1

(
E
(
L◦(f, b) − L◦(f̃P,λ, b̃P,λ)

)) q
q+1 + 8CĈ

q+2
q+1 a

q
q+1 (λ) .

Remark 6.7 Proposition 6.6 establishes a variance bound of the form EP g2 ≤ c (EP g)α + δ with

α = q
q+1 , c = (64 + 32‖(2η − 1)−1‖q,∞)B

q+2
q+1 , and δ = (128 + 64‖(2η − 1)−1‖q,∞)B

q+2
q+1 a

q
q+1 (λ).

Recall, that by substituting α by q
q+1 the term ε := ε(n, a,B, c, δ, x) in Theorem 5.5 becomes

ε = B
2p(q+1)
2q+pq+4 c

(2−p)(q+1)
2q+pq+4

(a

n

) 2(q+1)
2q+pq+4 + B

p
2 δ

2−p
4

(a

n

) 1
2 + B

(a

n

) 2
2+p +

√
δx

n
+
(cx

n

) q+1
q+2 +

Bx

n
. (33)

Of course, we can also replace c and δ by the above estimates. However, we will see in Section 7
and Section 10 that the above form is slightly easier to control.

7 Combining noise, complexity and approximation exponent:

proof of Theorem 2.4

In this section we prove Theorem 2.4. Since our variance bounds have different forms for the
cases q = 0 and q > 0 we prove the theorem for these cases separately. We begin with the case
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q = 0. However, before we begin with the proof we explain its main idea which contains a method
fundamental for all our results on rates. For simplicity we only consider the L1-SVM without offset
in the following explanation. Recall that for these classifiers it is well known that ‖fT,λ‖ ≤ 1√

λ
holds for all training sets T and all λ > 0. Now, let us assume that H approximates P with
exponent 0 < β ≤ 1 and that H has complexity exponent 0 < p < 2. Obviously we have B � 1√

λ
.

Furthermore, Proposition 6.3 shows c ∼ 1
λ and δ = 0. With the help of Remark 6.4 we then see

that the term ε(n, a,B, c, δ, x) in Theorem 5.5 becomes

ε(n, a,B, c, δ, x) = λ
− p

2+p
n λ

− 2−p
2+p

n n
− 2

2+p + xλ
− 1

2
n n

− 2
2+p + xλ−1

n n−1 � xλ
− 2

2+p
n n

− 2
2+p (34)

if λnn → ∞. Note that the latter is also a necessary condition for ε(n, a,B, c, δ, x) → 0. Now recall
that RP (f) −RP ≤ 2Rl,P (f) − 2Rl,P holds for all measurable functions f : X → R and the hinge
loss function l as shown in [4] and [36]. Using Theorem 5.5 we then find

RP (fT,λn) −RP ≤ 2
(
λ‖fT,λn‖2 + Rl,P (fT,λn) −Rl,P

) ≤ 2a(λn) + cpxλ
− 2

2+p
n n− 2

2+p (35)

with probability not less than 1 − e−x. Since a(λ) � λβ it is easily checked that the fastest rate of
convergence on the right side of (35) can be achieved for λn := n

− 2
2+2β+βp . In this case the right

side of (35) converges to zero with order n
− 2β

2+2β+βp . Unfortunately, this is significantly worse than
the result of Theorem 2.4! The reason for this bad rate is that we only used the trivial estimate
‖fT,λ‖ ≤ 1√

λ
. However, λ‖fP,λ‖2 ≤ a(λ) � λβ immediately implies ‖fP,λ‖ � λ

β−1
2 . Now let us

assume for a moment that we could prove such a bound for the empirical solutions fT,λ, too. The
term ε(n, a,B, c, δ, x) in Theorem 5.5 would then become

ε(n, a,B, c, δ, x) = λ
β−1

2
· 2p
2+p

n λ
− 2−p

2+p
n n

− 2
2+p + xλ

β−1
2

n n
− 2

2+p + xλ−1
n n−1

� xλ
βp−2
2+p

n n− 2
2+p + xλ−1

n n−1 .

Therefore, by Theorem 5.5 we would find

RP (fT,λn) −RP � λβ
n + xλ

βp−2
2+p

n n
− 2

2+p + xλ−1
n n−1 (36)

with high probability as in (35). It can be easily checked that the fastest rate of convergence on
the right side of (36) would be achieved for λn := n

− 1
β+1 . In this case the right side of (36) would

converge to zero with order n− β
β+1 , i.e. essentially with the order of Theorem 2.4 in the case q = 0.

Unfortunately, we are not able to prove ‖fT,λ‖ ≤ λ
β−1

2 . However, we will show that this bound

“almost” holds with high probability. The idea of the proof is as follows: We define λn := n− 1
β+1

and begin with the trivial estimate ‖fT,λ‖ ≤ 1√
λ
. Then by estimate (35) and Theorem 5.5 we find

a constant C > 0 such that for all n ≥ 1 and all x ≥ 1 the probability of

λn‖fT,λn‖2 ≤ λn‖fT,λn‖2 + Rl,P (fT,λn) −Rl,P

≤ λn‖fP,λn‖2 + Rl,P (fP,λn) −Rl,P + Cxλ
− 2

2+p
n n− 2

2+p

≤ Cλβ
n + Cxλ

2β
2+p
n

is not smaller than 1 − e−x. For such training sets T we obtain ‖fT,λn‖ ≤ Cxλ
β

2+p
− 1

2
n ≤ Cxλ

β
4
− 1

2
n .

In other words, with high probability we have a nontrivial bound on ‖fT,λn‖ for large sample sizes.
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The main idea of our shrinking technique which is used in all our proofs is to iterate the above step
in order to successively improve the bound on ‖fT,λn‖. The following lemma works out a single
step for q = 0 in the situation of Theorem 2.4:

Lemma 7.1 Let H be a RKHS of a continuous kernel on X with complexity exponent 0 < p < 2.
Furthermore, let P be a probability measure on X × Y that is approximated by H with exponent
0 < β ≤ 1. Define λn := n

− 1
β+1 and assume that there are constants 0 ≤ ρ < β and C ≥ 1 such

that
Pr∗
(
T ∈ (X × Y )n : ‖fT,λn‖ ≤ Cxλ

ρ−1
2

n

)
≥ 1 − e−x

for all n ≥ 1 and all x ≥ 1. Then there is another constant Ĉ ≥ 1 such that for ρ̂ := ρ+β
2 and for

all n ≥ 1, x ≥ 1 we have

Pr∗
(
T ∈ (X × Y )n : ‖fT,λn‖ ≤ Ĉxλ

ρ̂−1
2

n

)
≥ 1 − e−x .

Proof: Let f̂T,λn be a minimizer of RL,T on Cxλ
ρ−1
2

n BH , where L is defined by (27). By our
assumption we have f̂T,λn = fT,λn with probability not less than 1 − e−x since fT,λn is unique for
every training set T by the strict convexity of L. We show that for some constant C̃ > 0 and all
n ≥ 1, x ≥ 1 the improved bound

‖f̂T,λn‖ ≤ C̃xλ
ρ̂−1
2

n (37)

holds with probability not less than 1−e−x. Consequently, ‖fT,λn‖ ≤ C̃xλ
ρ̂−1
2

n holds with probability
not less than 1 − 2e−x. Obviously, the latter implies the assertion. In order to establish (37) we
will apply Theorem 5.5 to the modified L1-SVM classifier which produces f̂T,λn . To this end we
first observe that by Proposition 6.3 we may choose B, c, δ such that

B ∼ xλ
ρ−1
2

n

c ∼ xλ−1
n

δ = 0 .

Furthermore, we can choose a ∼ 1. By Remark 6.4 we then see that the term ε(n, a,B, c, δ, x) in
Theorem 5.5 becomes

ε(n, a,B, c, δ, x) � xλ
(ρ−1)p
2+p

n λ
− 2−p

2+p
n n

− 2
2+p + x2λ

ρ−1
2

n n
− 2

2+p + xλ−1
n n−1

= xλ
pρ+2β
2+p

n + x2λ
pρ+2ρ+2−p+4β

4+2p
n + xλ−1

n λβ+1
n

� x2λ
ρ+β

2
n .

By Theorem 5.5 there is therefore a constant C̃1 > 0 independent of n and x such that for all n ≥ 1
and all x ≥ 1 the estimate

λn‖f̂T,λn‖2 ≤ λn‖f̂T,λn‖2 + Rl,P (f̂T,λn) −Rl,P

≤ λn‖f̂P,λn‖2 + Rl,P (f̂P,λn) −Rl,P + C̃1x
2λ

ρ+β
2

n

holds with probability not less than 1−e−x. Now recall that our considerations in Section 3 showed

‖fP,λn‖ � λ
β−1

2
n . Since ρ < β this implies ‖fP,λn‖ ≤ λ

ρ−1
2

n ≤ Cxλ
ρ−1
2

n for large n. In other words,
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for large n we have fP,λn = f̂P,λn. With probability not less than 1 − e−x this gives

λn‖f̂T,λn‖2 ≤ λn‖fP,λn‖2 + Rl,P (fP,λn) −Rl,P + C̃1x
2λ

ρ+β
2

n

≤ C̃2λ
β
n + C̃1x

2λ
ρ+β

2
n

≤ C̃3x
2λ

ρ+β
2

n

for some constants C̃2, C̃3 > 0 independent of n and x. From this we easily obtain that (37) holds
for all n ≥ 1 with probability not less than 1 − e−x.

Proof of Theorem 2.4 for distributions with Tsybakov exponent q = 0: We define ρ0 :=
0 and ρi+1 := ρi+β

2 . Iteratively applying Lemma 7.2 gives a sequence of constants Ci > 0 with

Pr∗
(
T ∈ (X × Y )n : ‖fT,λn‖ ≤ Cixλ

ρi−1

2
n

)
≥ 1 − e−x

for all n ≥ 1 and all x ≥ 1. Since an easy induction shows ρi = (1−2−n)β we hence find a constant
C > 0 such that

Pr∗
(
T ∈ (X × Y )n : ‖fT,λn‖ ≤ Cxλ

(1−ε)β−1
2

n

)
≥ 1 − e−x

for all n ≥ 1 and all x ≥ 1. We write ρ := (1 − ε)β. As in the proof of Lemma 7.1 we denote a

minimizer of RL,T on Cxλ
ρ−1
2

n BH by f̂T,λn . We have just seen that f̂T,λn = fT,λn with probability
not less than 1− e−x. Therefore, we only have to apply Theorem 5.5 to the modified optimization
problem which defines f̂T,λn . As in the proof of Lemma 7.1 we see

ε(n, a,B, c, δ, x) � x2n
− ρ+β

2β+2 .

Applying Theorem 5.5 we then obtain that with probability not less than 1 − e−x we have

RP (f̂T,λn) −RP ≤ 2λn‖f̂T,λn‖2 + 2Rl,P (f̂T,λn) −Rl,P

≤ 2λn‖f̂P,λn‖2 + 2Rl,P (f̂P,λn) −Rl,P

≤ a(λn) + C̃1x
2n

− ρ+β
2β+2 , (38)

where C̃1 > 0 is a constant independent of n and x. Furthermore, we have already seen in the proof
of Lemma 7.1 that λn‖f̂P,λn‖2 + Rl,P (f̂P,λn) −Rl,P ≤ a(λn) holds for large n. Now, from (38) we
easily deduce the assertion using the definition of ρ.

In the rest of this section we will prove Theorem 2.4 for distributions having a Tsybakov noise
exponent q > 0. Since for such distributions our variance bound Proposition 6.6 significantly differs
from Proposition 6.3 which has been used for q = 0 we first have to establish a new shrinking lemma:

Lemma 7.2 Let H be a RKHS of a continuous kernel on X with complexity exponent 0 < p < 2,
and let P be a distribution with Tsybakov noise exponent 0 < q ≤ ∞. Furthermore, assume that H

approximates P with exponent 0 < β ≤ 1. Define λn := n
− 4(q+1)

(2q+pq+4)(1+β) and assume that there are
constants 0 ≤ ρ < β and C ≥ 1 such that

Pr∗
(
T ∈ (X × Y )n : ‖fT,λn‖ ≤ Cxλ

ρ−1
2

n

)
≥ 1 − e−x
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for all n ≥ 1 and all x ≥ 1. Then there is another constant Ĉ ≥ 1 such that for ρ̂ := ρ+β
2 and for

all n ≥ 1, x ≥ 1 we have

Pr∗
(
T ∈ (X × Y )n : ‖fT,λn‖ ≤ Ĉxλ

ρ̂−1
2

n

)
≥ 1 − e−x .

The same result holds for L1-SVM’s with offset.

Proof: For brevity’s sake we only prove this Lemma for L1-SVM’s with offset. The proof for
L1-SVM’s without offset is almost identical. Therefore, let L be defined by (28). Analogously to

the proof of Lemma 7.1 we denote a minimizer of RL,T (., .) on Cxλ
ρ−1
2

n (BH × [−K − 1,K + 1])

by (f̂T,λn , b̂T,λn). By our assumption Lemma 5.6 shows |b̃T,λn | ≤ Cxλ
ρ−1
2

n (K + 1) with probability
not less than 1 − e−x for all possible values of the offset. Therefore, for such training sets we have
f̂T,λn = f̃T,λn since the RKHS component f̃T,λn of L1-SVM solutions is unique for every training
set T by the strict convexity of L in f . Furthermore, by the above considerations we may define
b̂T,λn := b̃T,λn for such training sets. As in the proof of Lemma 7.1 it now suffices to show the
existence of a constant C̃ > 0 which satisfies

‖f̂T,λn‖ ≤ C̃xλ
ρ̂−1
2

n (39)

with probability not less than 1− e−x. To this end we first observe by Proposition 6.6 that we may
choose B, c and δ such that

B ∼ xλ
ρ−1
2

n

c ∼ x
q+2
q+1 λ

ρ−1
2

· q+2
q+1

n

δ ∼ x
q+2
q+1 λ

ρ−1
2

· q+2
q+1

+ βq
q+1

n .

Furthermore, we can obviously choose a ∼ 1. With these relations Remark 6.7 tells us

ε(n, a,B, c, δ, x) � xλ
ρ−1
2

n n− 2(q+1)
2q+pq+4 + xλ

(ρ−1)
2

· 2q+pq+4
4(q+1)

+ 2−p
4

· βq
q+1

n n− 1
2 + xλ

ρ−1
2

n n− 2
2+p

+x2λ
ρ−1
4

· q+2
q+1

+ βq
2(q+1)

n n− 1
2 + x2λ

(ρ−1)
2

n n− q+1
q+2 + x2λ

(ρ−1)
2

n n−1

� x2λ
ρ−1
2

n n
− 2(q+1)

2q+pq+4 + x2λ
(ρ−1)

2
· 2q+pq+4

4(q+1)
+ 2−p

4
· βq
q+1

n n− 1
2

∼ x2λ
ρ−1
2

n λ
1+β

2
n + x2λ

(ρ−1)
2

· 2q+pq+4
4(q+1)

+ 2−p
4

· βq
q+1

n λ
(2q+pq+4)(1+β)

8(q+1)
n

∼ x2λ
ρ+β

2
n + x2λ

(ρ+β)(2q+pq+4)+2βq(2−p)
8(q+1)

n .

Now observe that β > ρ ≥ 0 and p < 2 imply

ρ + β

2
≤ (ρ + β)(2q + pq + 4) + 2βq(2 − p)

8(q + 1)
.

Therefore we obtain
ε(n, a,B, c, δ, x) � x2λ

ρ+β
2

n .

The rest of the proof is analogous to the proof of Lemma 7.1

Proof of Theorem 2.4 for distributions with Tsybakov exponent q > 0: By using Lemma
7.2 the proof in the case q > 0 is completely analogous to the case q = 0.
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8 The approximation error function for Gaussian kernels

We now consider the approximation error function for the RKHS Hσ on the closed unit ball X ⊂ R
d

defined by the Gaussian kernel
kσ(x, x́) = e−σ2|x−x́|2,

where we denote the Euclidian norm on R
d by | · |. In the following it will be useful to consider

the integral operators and their associated RKHS’s on more general sets than X. Let Ω ⊂ R
d be

measurable and let KΩ,σ denote the integral operator with kernel kσ on L2(Ω) and when necessary
denote the corresponding RKHS, discussed in Section 3, by Hσ(Ω). If we denote iΩ : L2(Ω) →
L2(Rd) the extension of a function on Ω by zero to the rest of R

d and by rΩ : L2(Rd) → L2(Ω) the
restriction of a function on R

d to the set Ω, then ‖iΩ‖ = 1 and ‖rΩ‖ ≤ 1 and

KΩ,σ = rΩKRd,σiΩ. (40)

It will also be useful to consider the normalized Gaussian kernel

k̂σ(x, x́) = σdπ− d
2 kσ(x, x́) = σdπ− d

2 e−σ2|x−x́|2 ,

and call them normalized since integration with respect to x or x́ over R
d produces unity. We also

consider the corresponding Gauss-Weierstrass integral operator K̂Rd,σ and the normalized operators
K̂Ω,σ. In particular (40) also holds for the normalized operators.

We need a preparatory lemma.

Lemma 8.1 For g ∈ L2(Ω) we have K̂Ω,σg ∈ Hσ(Ω) and

‖K̂Ω,σg‖Hσ(Ω) ≤ σ
d
2 π− d

4 ‖g‖L2(Ω).

Proof: Since

K̂Ω,σg = K̂
1
2
Ω,σK̂

1
2
Ω,σg = σ

d
2 π− d

4 K
1
2
Ω,σK̂

1
2
Ω,σg

and K̂
1
2
Ω,σg ∈ L2(Ω) we observe from the discussion on RKHS in Section 3 the first assertion is

proved. Using the shorthand notation ‖ · ‖σ for ‖ · ‖Hσ(Ω), we also obtain

‖K̂Ω,σg‖σ = σ
d
2 π− d

4 ‖K
1
2
Ω,σK̂

1
2
Ω,σg‖σ

= σ
d
2 π− d

4 ‖K̂
1
2
Ω,σg‖L2(Ω)

≤ σ
d
2 π− d

4 ‖K̂
1
2
Ω,σ‖‖g‖L2(Ω) .

The continuous functional calculus theorem for self adjoint operators (see e.g. [23]) implies that

‖K̂
1
2
Ω,σ‖ = ‖K̂Ω,σ‖ 1

2 . Therefore to finish the proof we only need to show that K̂Ω,σ is a contraction
on L2(Ω). To that end, recall that Young’s inequality [24] states that for convolutions

‖f ∗ g‖L2(Rd) ≤ ‖f‖L1(Rd)‖g‖L2(Rd)

and since the Gauss-Weierstrass integral operator K̂Rd,σ is a convolution and
∫

σdπ− d
2 e−σ2|u|2du = 1

it follows that K̂Rd,σ is a contraction. From (40) we have K̂Ω,σ = rΩK̂Rd,σiΩ and since ‖iΩ‖ = 1
and ‖rΩ‖ ≤ 1 it follows that ‖K̂Ω,σ‖ ≤ 1.
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When the distribution has a nontrivial geometric noise exponent, we can now esablish upper
bounds on the approximation error function for Gaussian RKHS in terms of the parameter σ.

Proof of Theorem 2.14: We utilize the righthand side of (16), i.e.

a(λ) ≤ λ‖f‖2
σ + Rl,P (f) −Rl,P , f ∈ Hσ(X) (41)

to bound the approximation error function through a judicious choice of function f̂ ∈ Hσ(X). Let
η(x) = P (y = 1|x) be any regular conditional distribution for P and let fP be any Bayes function
with values in [−1, 1] such that fP = 1 on X1 and fP = −1 on X−1. We will choose a function f̂
by smoothing the extension f́P of fP to X́ := 3X. To do so first consider the extension of η to be
constant in the outward radial direction

ή(x) =

{
η(x), |x| ≤ 1
η( x

|x|), |x| > 1
(42)

and define X́−1 := {x ∈ X́ : ή(x) < 1
2}, X́1 := {x ∈ X́ : ή(x) > 1

2}. The following lemma in which
B(x, r) denotes the open ball of radius r about x in R

d shows that this extension cooperates well
with τx.

Lemma 8.2 For x ∈ X1, we have B(x, τx) ⊂ X́1 and for x ∈ X−1, we have B(x, τx) ⊂ X́−1.

Proof: Let x ∈ X1 and x′ ∈ B(x, τx). If x′ ∈ X we have |x − x′| < τx which implies η(x) > 1
2

by the definition of τx. This shows x′ ∈ X́1. Now let us assume |x′| > 1. Since |〈x, x′〉| ≤ |x′| and
Pythagoras theorem we then obtain∣∣∣∣ x′

|x′| − x

∣∣∣∣
2

=
∣∣∣∣ x′

|x′| −
〈x, x′〉x′

|x′|2
∣∣∣∣
2

+
∣∣∣∣ 〈x, x′〉x′

|x′|2 − x

∣∣∣∣
2

≤
∣∣∣∣x′ − 〈x, x′〉x′

|x′|2
∣∣∣∣
2

+
∣∣∣∣〈x, x′〉x′

|x′|2 − x

∣∣∣∣
2

= |x′ − x|2 .

Therefore, we have
∣∣ x′
|x′| − x

∣∣ < τx which implies ή(x′) = η
(

x′
|x′|
)

> 1
2 .

Let f́P be a measurable function with values in [−1, 1] which coincides with fP on X such that
f́P = 1 on X́1 and f́P = −1 on X́−1. Consider the function f̂ = rXK̂X́,σf́P . We first need to show

that f̂ ∈ Hσ(X). In addition we will bound the first term λ‖f̂‖2 in the righthand side of inequality
(41). According to Aronszajn [1] we have rXHσ(X́) ⊂ Hσ(X) and

‖rXf‖Hσ(X) ≤ ‖f‖Hσ(X́)

for all f ∈ Hσ(X́). Consequently to show that f̂ = rXK̂X́,σf́P ∈ Hσ(X) it suffices to show that

K̂X́,σf́P ∈ Hσ(X́). We apply Lemma 8.1 with Ω = X́ to obtain

‖f̂‖Hσ(X) = ‖rXK̂X́,σf́P‖Hσ(X) ≤ ‖K̂X́,σf́P‖Hσ(X́) ≤ σ
d
2 π− d

4 ‖f́P‖L2(X́) ≤ σ
d
2 π− d

4 vol(X́)

= σ
d
2 (

81
π

)
d
4 θ(d) , (43)

where θ(d) = 2π
d
2

dΓ(d
2
)

is the volume of X.
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We now proceed to bound the term Rl,P (f̂) − Rl,P in the righthand side of inequality (41). For
any function which satisfies −1 ≤ f ≤ 1, Zhang [36] shows that

Rl,P (f) −Rl,P = EPX
(|2η − 1||f − fP |).

Since −1 ≤ f́P ≤ 1 it follows that −1 ≤ iX́ f́P ≤ 1. It is well known for the Gauss-Weierstrass heat
operator K̂Rd,σ that consequently

−1 ≤ K̂Rd,σiX́ f́P ≤ 1.

Since K̂X́,σ = rX́K̂Rd,σiX́ follows from (40) and PX has support in X we obtain

Rl,P (f̂) −Rl,P = Rl,P (K̂
Rd,σiX́ f́P ) −Rl,P = EPX

(|2η − 1||K̂
Rd,σiX́ f́P − fP |). (44)

Now for x ∈ X we have

f̂(x) =
∫

X́
k̂σ(x, x́)f́P (x́)dx́ =

∫
Rd

k̂σ(x, x́)iX́ f́P (x́)dx́

=
∫

Rd

k̂σ(x, x́)(iX́ f́P (x́) + 1)dx́ − 1

≥
∫

B(x,τx)
k̂σ(x, x́)(iX́ f́P (x́) + 1)dx́ − 1. (45)

When x ∈ X1, Lemma 8.2 showed that B(x, τx) ⊂ X́1 so that (45) implies

f̂(x) ≥ 2
∫

B(x,τx)
k̂σ(x, x́)dx́ − 1 = 2Pγσ (|u| < τx) − 1 = 1 − 2Pγσ (|u| ≥ τx) ,

where γσ = σd(π)−
d
2 e−σ2|u|2du is a spherical Gaussian in R

d. According to the tail bound inequality
[17, inequality 3.5, p. 59] for spherical Gaussians we have

Pγσ(|u| ≥ r) ≤ 4e−σ2r2/4d .

Consequently, for x ∈ X1 we obtain

1 ≥ f̂(x) ≥ 1 − 8e−σ2τ2
x/4d.

For x ∈ X−1 we analogously obtain that

−1 ≤ f̂(x) ≤ −1 + 8e−σ2τ2
x/4d

so that on X1 ∪ X−1 we have

|K̂Rd,σiX́ f́P − fP | ≤ 8e−σ2τ2
x/4d.

Consequently from inequality (44) and letting t = 4d
σ2 in the geometric noise assumption we obtain

Rl,P (f̂) −Rl,P ≤ 8Ex∼PX
(|2η(x) − 1|e−σ2τ2

x/4d) ≤ 8C(4d)
αd
2 σ−αd , (46)

where α and C are the constants corresponding the geometric noise assumption. To finish the
proof of Theorem 2.14, we apply the inequalities (46) and (43) to inequality (41) with the choice
f̂ = rXK̂X́,σf́P .
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8.1 Sufficient conditions for the geometric noise condition

In this section we provide a relationship between the geometric noise exponent and the Tsybakov
noise and Hölder about 1

2 exponents.

Proof of Theorem 2.13: When γ = 0 the theorem is trivially true so we assume γ > 0. In the
following, all Lebesgue and Lorentz spaces (see e.g. [5]) are with respect to the measure P̂X . First
let us consider the case q ≥ 1 where we can apply the Hölder inequality for Lorentz spaces ([20])

‖fg‖1 ≤ ‖f‖q,∞‖g‖q́,1,

where q́ is defined by 1
q + 1

q́ = 1, to obtain that

Ex∼PX
(|2η(x) − 1|e−τ2

x/t) = EP̂X
(|2η(x) − 1|e−τ2

x/t) ≤ ‖(2η − 1)−1‖q,∞‖(2η − 1)2e−
τ2
x
t ‖q́,1.

The Hölder about 1
2 assumption implies that

|2η(x) − 1|2e− τ2
x
t ≤ |2η(x) − 1|2e−

( |2η(x)−1|
cγ

) 2
γ

t−1

for all x ∈ X. Let a = |2η − 1|−1 and b = t(cγ)
2
γ so that

|2η − 1|2e− τ2
x
t ≤ g(a)

where g(a) = a−2e−
a
− 2

γ

b . Since the range of a is constrained to a ≥ 1 one can show for γ > 0 and
0 < b ≤ 2

3γ that g is strictly increasing and invertible on a ≥ 1. Extend g to a strictly increasing
and invertible function on R

+ and denote this extension also by g. Then for this extension we have
P̂X(g(a) > g(τ)) = P̂X(a > τ) which amounts to

P̂X(g(a) > τ) = P̂X(a > g−1(τ))

For a function f we utilize the non-increasing rearrangement

f∗(u) := inf {σ : P̂X(f > σ) ≤ u},

of f which can be used to compute Lorentz norms (see e.g. [5]). The identity (g ◦ a)∗ = g ◦ a∗

follows immediately:

(g ◦ a)∗(u) = inf {σ : P̂X(g(a) > σ) ≤ u}
= inf {σ : P̂X(a > g−1(σ)) ≤ u}
= g(inf {g−1(σ) : P̂X(a > g−1(σ)) ≤ u})
= g(a∗(u))
= g ◦ a∗(u).

Now, inequality (5) implies P̂X

(
a ≤ ( u

C

) 1
q
) ≤ u for all u > 0. Therefore, we find

a∗(u) = inf{σ : P̂X(a > σ) ≤ u} ≤ inf{σ : P̂X(a ≥ σ) ≤ u} ≤
( u

C

)− 1
q
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for all u > 0. Since (g ◦ a)∗ = g ◦ a∗ and g is increasing we hence have

(g ◦ a)∗(u) ≤ g
(( u

C

)− 1
q
)

for all 0 < u < 1. Now, for fixed α̂ > 0 the bound e−x � x−α̂

ln2 (x)+1
for all x > 0, implies

g(a) � bα̂ a
2
(

α̂
γ
−1
)

ln2 (a−
2
γ b−1) + 1

and so

(g ◦ a)∗(u) � bα̂ u
2
q

“
1− α̂

γ

”

ln2
((

u
C

) 2
qγ b−1

)
+ 1

.

If we define α̂ := γ q+1
2 then it follows that 1

q́ + 2
q (1 − α̂

γ ) = 0. Consequently,

‖(2η − 1)2e−
τ2
x
t ‖q́,1 ≤ ‖g(a)‖q́,1 =

∞∫
0

u
1
q́ (g ◦ a)∗(u)

du

u
� bα̂

∞∫
0

1

ln2 (( u
C )

2
qγ b−1) + 1

du

u

� bα̂

∞∫
0

1
ln2 u + 1

du

u

by a change of variables. Since ∫ ∞

0

1
ln2 u + 1

du

u
< ∞

we obtain that
EPX

(|2η(x) − 1|e−τ2
x/t) � tγ

q+1
2 (47)

for t ≤ 2

3γ(cγ )
2
γ
. In addition, since EPX

(|2η(x) − 1|e−τ2
x/t) ≤ 1 for all positive t estimate (47) holds

for all t > 0. Since tγ
q+1
2 = t

αd
2 with α = γ q+1

d , the Definition 2.10 of the geometric noise exponent
implies the assertion for q ≥ 1.

Now consider the case 0 ≤ q < 1 where the Hölder inequality in Lorentz space does not apply.
Then

EPX
(|2η(x) − 1|e−τ2

x/t)

= EP̂X
(|2η(x) − 1|e−τ2

x/t)

= EP̂X
(1|2η(x)−1|≤τ |2η(x) − 1|e−τ2

x/t) + EP̂X
(1|2η(x)−1|>τ |2η(x) − 1|e−τ2

x/t)

≤ Cτ q+1 + EP̂X
(1|2η(x)−1|>τ |2η(x) − 1|e−τ2

x/t).

Since η is Hölder about 1
2 (inequality (13)) we obtain

EPX
(|2η(x) − 1|e−τ2

x/t) ≤ Cτ q+1 + e
−( τ

cγ
)
2
γ /t (48)

for all t, τ ≥ 0. We define τ by

τ q+1 := e
−( τ

cγ
)
2
γ /t

.
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For â := (cγ)
2
γ (q + 1) and small t this definition implies

τ ≤ ( âγ

2
) γ

2
(
t ln

1
ât

) γ
2 .

Since ( âγ

2
) γ(q+1)

2
(
t ln

1
ât

) γ(q+1)
2 � t

αd
2

for all α < γ q+1
d , inequality (48) and the Definition 2.10 of the geometric noise exponent implies

the assertion for 0 < q < 1.

9 Lorentz norms on the log covering numbers for Gaussian kernels

In this section we consider the map IHσ : Hσ → L2(TX) defined in (19) for the Gaussian RKHS
Hσ defined by the Gaussian kernel

kσ(x, x́) = e−σ2|x−x́|2.

In particular we provide bounds on the covering numbers of IHσ needed in Section 5. Along the way
we bound the covering numbers of the map JHσ defined in (18). We use the shorthand notation Iσ

for IHσ and Jσ for JHσ . Since the bounds will be of the form logN (ε) ≤ Cε
− 1

p for some p and C,
and such an inequality implies that logN (.) lies in the Lorentz space Lp,∞ (see e.g. [5]) with norm
not greater than C we refer to such bounds as bounds on the Lorentz norms of the log covering
numbers. We begin by first considering the factor Jσ : Hσ → C(X) of Iσ.

Theorem 9.1 Consider the embedding Jσ : Hσ → C(X) and let 0 < p < 2. There is a constant
cp,d > 0 depending only on p and d such that for all ε > 0

logN (Jσ, ε) ≤ cp,dσ
(1− p

4
)dε−p.

Proof: Since Hσ = Hσ(X) consists of analytic functions, Hσ is isometrically isomorphic with
Hσ(

◦
X) where

◦
X ⊂ X ⊂ R

d is the open unit ball ([1]). Consequently in the following we do not
concern ourselves with the distinction between Hσ(X) and Hσ(

◦
X). Let Kσ : L2(

◦
X) → L2(

◦
X)

denote the integral operator with kernel kσ on the open unit ball
◦
X. Let ‖ · ‖ denote the norm in

L2(
◦
X). According to Cucker and Smale [12, Thm. 3, p. 27] we obtain

inf
‖K−1

σ h‖≤R
‖f − h‖ ≤ 1

R
‖K− 1

2
σ f‖2 =

1
R
‖f‖2

Hσ

for all f ∈ Hσ where ‖K−1
σ h‖ = ∞ if h �= Kσg for some g ∈ L2(

◦
X).

Suppose now that H ⊂ L2(
◦
X) is a dense Hilbert space with ‖h‖ ≤ ‖h‖H, and that Kσ : L2(

◦
X) →

H ⊂ L2(
◦
X) with ‖Kσ : L2(

◦
X) → H‖ ≤ cσ,H. It follows that

inf
‖h‖H≤cσ,HR

‖f − h‖ ≤ inf
‖K−1

σ h‖≤R
‖f − h‖ ≤ 1

R
‖f‖2

Hσ

so that
inf

‖h‖H≤R
‖f − h‖ ≤ cσ,H

R
‖f‖2

Hσ
.

38



By a result of Smale and Zhou [27, Thm. 3.1] it follows that f is in the real interpolation space
(L2(

◦
X),H) 1

2
,∞ (see [6] for the definition of interpolation spaces) and

‖f‖ 1
2
,∞ ≤ 2

√
cσ,H‖f‖Hσ .

Therefore we obtain a continuous embedding

J1 : Hσ → (L2(
◦
X),H) 1

2
,∞

with ‖J1‖ ≤ 2√cσ,H. If in addition a subset inclusion (L2(
◦
X),H) 1

2
,∞ ⊂ C(

◦
X) exists which extends

to a continuous embedding
J2 : (L2(

◦
X),H) 1

2
,∞ → C(X)

then we have a factorization Jσ = J2J1 and can conclude

logN (Jσ , ε) ≤ logN
(
J2,

ε

2√cσ,H

)
. (49)

Consequently to bound logN (Jσ, ε) we need to select an H, compute cσ,H, and bound logN (J2, ε)

for the embedding J2 : (L2(
◦
X),H) 1

2
,∞ → C(X). To that end let H be the Sobolev space H =

W m(
◦
X) with norm

‖f‖2
m =

∑
|α|≤m

‖Dαf‖2

where |α| =
∑d

i=1 αi, Dα =
∏d

i=1 ∂αi
i , and ∂αi

i denotes the αi-th partial derivative in the i-th
coordinate of R

d. By the Cauchy-Schwartz inequality

‖DαKσf‖2 =
∫

◦
X

∣∣∣∫ ◦
X

Dα
xkσ(x, x́)f(x́)dx́

∣∣∣2dx

≤
∫

X

(∫
X

∣∣Dα
xkσ(x, x́)

∣∣2dx́

∫
◦
X

f2(x́)dx́
)
dx

≤ ‖f‖2

∫
X

∫
X

∣∣Dα
xkσ(x, x́)

∣∣2dx́dx, (50)

where the notation Dα
x indicates that the differentiation takes place in the x variable. To address

the term Dα
xkσ(x, x́) we note that

Dα
x (e−|x|2) = (−1)|α|e−|x|2/2hα(x)

where the multivariate Hermite functions hα(x) =
∏d

i=1 hαi(xi) are products of the univariate.
Since

∫
R

h2
k(x)dx = 2kk!

√
π (see e.g. [11]) we obtain∫

Rd

|Dα
x (e−|x|2)|2dx =

∫
Rd

e−|x|2h2
α(x)dx ≤

∫
Rd

h2
α(x)dx = 2|α|α!π

d
2 (51)

where we denote α! :=
∏d

i=1 αi!. Applying the translation invariance of kσ we obtain∫
Rd

|Dα
xkσ(x, x́)|2dx́ =

∫
Rd

|Dα
x́kσ(0, x́)|2dx́ =

∫
Rd

|Dα
x́ (e−σ2|x́|2)|2dx́.
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By a change of variables we can apply inequality (51) to the integral on the righthand side∫
Rd

|Dα
x́ (e−σ2|x́|2)|2dx́ = σ2|α|−d

∫
Rd

|Dα
x́ (e−|x́|2)|2dx́ ≤ σ2|α|−d2|α|α!π

d
2

Now, using the trivial estimate∫
X

∫
X
|Dα

xkσ(x, x́)|2dx́dx ≤
∫

X

∫
Rd

|Dα
x kσ(x, x́)|2dx́dx

we obtain ∫
X

∫
X
|Dα

xkσ(x, x́)|2dx́dx ≤ θ(d)σ2|α|−d2|α|α!π
d
2 ,

where θ(d) = 2π
d
2

dΓ(d
2
)

is the volume of X. Since
∑

|α|≤m α! ≤ dmm!d and ‖Kσf‖2
m =∑

|α|≤m ‖DαKσf‖2 we therefore obtain from (50) that

‖Kσ‖ ≤
(

2πd

dΓ(d
2 )

) 1
2

(2d)
m
2 m!

d
2 σm− d

2

for σ ≥ 1. Therefore we can set cσ,H =
(

2πd

dΓ(d
2
)

) 1
2 (2d)

m
2 m!

d
2 σm− d

2 .

Now let us consider J2 : (L2(
◦
X),W m(

◦
X)) 1

2
,∞ → C(X). According to Triebel [31, p. 267] we have

(L2(
◦
X),W m(

◦
X)) 1

2
,∞ = B

m
2

2,∞(
◦
X)

isomorphically and
logN (B

m
2

2,∞(
◦
X) → C(X), ε) ≤ cm,dε

− 2d
m (52)

for m > d follows from a similar result of Birman and Solomyak’s ([7], cf. also [31]) for Slobodeckij
(fractional Sobolev) spaces, where the constant cm,d depends only on m and d. Consequently we
obtain from inequalities (49) and (52) that

logN (Jσ, ε) ≤ cm,d

(
ε

2√cσ,H

)− 2d
m

= cm,d(4cσ,H)
d
m ε−

2d
m

= cm,d

(
32πd

dΓ(d
2 )

) d
2m

(2d)
d
2 m!

d2

2m σd− d2

2m ε−
2d
m

= c̃m,dσ
d− d2

2m ε−
2d
m

for all m > d. Setting m = 2d
p finishes the proof of Theorem 9.1.

Proof of Theorem 2.15: Since Iσ factors through Jσ and the evaluation map C(X) → L2(TX)
and the latter has norm not greater than 1, Theorem 9.1 and the product rule for covering numbers
imply that

sup
T∈Zn

logN (Iσ, ε) ≤ cq,d σ(1− q
4
)dε−q (53)

for all 0 < q < 2. To complete the proof of Theorem 2.15 we derive another bound on the covering
numbers and interpolate the two. To that end observe that Iσ : Hσ → L2(TX) factors through
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C(X) with both factors having norm not greater than 1. Hence Proposition 17.3.7 in [21] implies
that Iσ is absolutely 2-summing with 2-summing norm not greater than 1. By König’s theorem
([22, Lem. 2.7.2]) we obtain for approximation numbers (ak(Iσ)) of Iσ that

∑
k≥1 a2

k(Iσ) ≤ 1 for all

σ > 0. Since the approximation numbers are decreasing it follows that supk k
1
2 ak(Iσ) ≤ 1. Using

Carl’s inequality between approximation and entropy numbers (see Theorem 3.1.1 in [10]) we thus
find a constant c̃ > 0 such that

sup
T∈Zn

logN (Iσ, ε) ≤ c̃ε−2 (54)

for all ε > 0 and all σ > 0. We now interpolate the bound (54) with the bound (53). Since
‖Iσ : Hσ → L2(TX)‖ ≤ 1 we need only consider 0 < ε ≤ 1. Let 0 < q < p < 2 and 0 < a ≤ 1. Then
for 0 < ε < a we have

logN (Iσ , ε) ≤ cq,dσ
(1− q

4)dε−q ≤ cq,dσ
(1− q

4)dap−qε−p ,

and for a ≤ ε ≤ 1 we find
logN (Iσ, ε) ≤ c̃ε−2 ≤ c̃ap−2ε−p .

Since σ ≥ 1 we can set a := σ− 4−q
8−4q

·d and obtain

logN (Iσ , ε) ≤ c̃q,dσ
(1− p

2
)· 8−2q

8−4q
·dε−p ,

where c̃q,d is a constant depending only on q, d. The proof is finished by choosing q = 4δ
1+2δ when

δ < 2p
8−4p and q just smaller than p otherwise.

Let us finally treat Remark 2.7. We have seen in the above proof that we always have

‖(ak(IH))‖2 ≤ 1 .

By Carl’s inequality we hence find ∫ ∞

0

√
logN (IH , ε)dε < ∞.

Therefore, by the proofs of Lemma 5.7 and Proposition 5.4 we obtain

Rad(G, n, ε) ≤ cpB

√
a

n
,

where G is the function class considered in Theorem 5.5. The proof of Theorem 5.5 then shows that
the concentration inequality of Theorem 5.5 holds for p = 2. Finally, in order to prove Remark 2.7
we have repeat the proofs of Section 7 for q = 0 and p = 2.

10 L1-SVM’s with Gaussian kernels: proof of Theorem 2.16

In this section be prove Theorem 2.16. To this end let us suppose that for all 0 < p < 2 we can
determine constants c, γ > 0 such that

sup
T∈Zn

logN (BHσ , ε, L2(TX)) ≤ cσγdε−p (55)

holds for all ε > 0, σ ≥ 1. Recall, that by Theorem 2.15 we can choose γ := (1 − p
2 )(1 + δ) for all

δ > 0.
As in the previous proofs the approximation properties of H with respect to P play an important

role for downsizing the norm of the empirical L1-SVM solutions. This downsizing is again achieved
by our shrinking technique.
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Lemma 10.1 Let X be the closed unit ball of the Euclidian space R
d, and P be a distribution

on X × Y with Tsybakov noise exponent 0 ≤ q ≤ ∞ and geometric noise exponent 0 < α < ∞.
Furthermore, let us assume that we can bound the covering numbers by (55) for some 0 < γ ≤ 2
and 0 < p < 2. Given an 0 ≤ ς < 1

5 we define

λn := n
− 4(α+1)(q+1)

(2α+1)(2q+pq+4)+4γ(q+1)
· 1
1−ς

and
σn := λ

− 1
(α+1)d

n

Assume that for the L1-SVM without offset using the Gaussian RBF kernel with width σn there are
constants 1

2(α+1) + 4ς < ρ ≤ 1
2 and C ≥ 1 such that

Pr∗
(
T ∈ (X × Y )n : ‖fT,λn‖ ≤ Cxλ−ρ

n

)
≥ 1 − e−x

for all n ≥ 1 and all x ≥ 1. Then there is another constant Ĉ ≥ 1 such that for ρ̂ :=
1
2

(
1

2(α+1) + 4ς + ρ
)

and for all n ≥ 1, x ≥ 1 we have

Pr∗
(
T ∈ (X × Y )n : ‖fT,λn‖ ≤ Ĉxλ−ρ̂

n

)
≥ 1 − e−x .

If q > 0 then the same result is true for L1-SVM’s with offset.

Proof: For brevity’s sake we only prove the lemma for L1-SVM’s without offset. Using the idea of
the proof of Lemma 7.2 the proof of this lemma for L1-SVM’s with offset is analogous. Therefore,
let L be defined by (27). Furthermore, let f̂T,λn be a minimizer of RL,T on Cxλ−ρ

n BH . As in the
proof of Lemma 7.1 it suffices to show the existence of a constant C̃ > 0 which satisfies

‖f̂T,λn‖ ≤ C̃xλ−ρ̂
n (56)

with probability not less than 1 − e−x.
Let us first treat the case q > 0. For brevity’s sake we write β := 2(q+1)

(2α+1)(2q+pq+4)+4γ(q+1) . By
Proposition 6.6 and assumption (55) we observe that we may choose B, a and c such that

B ∼ xλ−ρ
n

a ∼ λ
− γ

α+1
n

c ∼ x
q+2
q+1 λ

−ρ· q+2
q+1

n .

Furthermore, Theorem 2.14 shows aσn(λn) � λ
α

α+1
n and thus by Proposition 6.6 we may choose

δ ∼ x
q+2
q+1 λ

αq−ρ(q+2)(α+1)
(α+1)(q+1)

n .

In order to apply Theorem 5.5 our first aim is to simplify the expression for ε(n, a,B, c, δ, x) given in
Remark 6.7. Since the arising terms are quite complex we begin with some preliminary estimates.

In order to estimate the first term B
2p(q+1)
2q+pq+4 c

(2−p)(q+1)
2q+pq+4

(
a
n

) 2(q+1)
2q+pq+4 we observe

B
2p(q+1)
2q+pq+4 c

(2−p)(q+1)
2q+pq+4 a

2(q+1)
2q+pq+4 ∼ xλ

−ρ− 2γ(q+1)
(α+1)(2q+pq+4)

n ∼ xλ
− ρ(α+1)(2q+pq+4)+2γ(q+1)

(α+1)(2q+pq+4)
n . (57)
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The definition of λn gives n = λ
− (2α+1)(2q+pq+4)+4γ(q+1)

4(α+1)(q+1)
·(1−ς)

n and therefore, we have

B
2p(q+1)
2q+pq+4 c

(2−p)(q+1)
2q+pq+4

(a

n

) 2(q+1)
2q+pq+4 ∼ xλ

− ρ(α+1)(2q+pq+4)+2γ(q+1)
(α+1)(2q+pq+4)

n n− 2(q+1)
2q+pq+4

= xλ
− ρ(α+1)(2q+pq+4)+2γ(q+1)

(α+1)(2q+pq+4)
n λ

q+1
2q+pq+4

· 1−ς
(α+1)β

n

= xλ
− 2ρ(α+1)(2q+pq+4)+4γ(q+1)

2(α+1)(2q+pq+4)
n λ

(2α+1)(2q+pq+4)+4γ(q+1)
2(α+1)(2q+pq+4)

(1−ς)
n

= λ
2α+1−2ρ(α+1)

2(α+1)
−ς· (2α+1)(2q+pq+4)+4γ(q+1)

2(α+1)(2q+pq+4)
n

= xλ
α

α+1
− 2ρ(α+1)−1

2(α+1)
−ς· (2α+1)(2q+pq+4)+4γ(q+1)

2(α+1)(2q+pq+4)
n . (58)

Furthermore, parts of the second term B
p
2 δ

2−p
4

(
a
n

) 1
2 of Remark 6.7 can be estimated by

B
p
2 δ

2−p
4 a

1
2 � xλ

− pρ
2

n λ
2−p
4

·αq−ρ(q+2)(α+1)
(α+1)(q+1)

n λ
− γ

2(α+1)
n

∼ xλ
2αq−2ρ(q+2)(α+1)−αpq+pρ(q+2)(α+1)−2pρ(α+1)(q+1)

4(α+1)(q+1)
n λ

− γ
2(α+1)

n

∼ xλ
2αq−2ρ(q+2)(α+1)−αpq−pqρ(α+1)

4(α+1)(q+1)
n λ

− γ
2(α+1)

n

∼ xλ
αq(2−p)−ρ(α+1)(2q+pq+4)

4(α+1)(q+1)
n λ

− γ
2(α+1)

n .

Using the definition of λn we hence obtain

B
p
2 δ

2−p
4

(a

n

) 1
2 � xλ

αq(2−p)−ρ(α+1)(2q+pq+4)
4(α+1)(q+1)

n λ
− γ

2(α+1)
n n− 1

2

= xλ
αq(2−p)−ρ(α+1)(2q+pq+4)

4(α+1)(q+1)
n λ

− 2γ(q+1)
4(α+1)(q+1)

n λ
1−ς

4(α+1)β
n

= xλ
2αq(2−p)−2ρ(α+1)(2q+pq+4)

8(α+1)(q+1)
n λ

− 4γ(q+1)
8(α+1)(q+1)

n λ
(2α+1)(2q+pq+4)+4γ(q+1)

8(α+1)(q+1)
(1−ς)

n

= xλ
2αq(2−p)−2ρ(α+1)(2q+pq+4)

8(α+1)(q+1)
n λ

(2α+1)(2q+pq+4)
8(α+1)(q+1)

−ς· (2α+1)(2q+pq+4)+4γ(q+1)
8(α+1)(q+1)

n

= xλ
4αq−2αpq−4αρq−2αρpq−8αρ−4ρq−2ρpq−8ρ

8(α+1)(q+1)
n λ

4αq+2αpq+8α+2q+pq+4
8(α+1)(q+1)

−ς· (2α+1)(2q+pq+4)+4γ(q+1)
8(α+1)(q+1)

n

= xλ
8αq−4αρq−2αρpq−8αρ−4ρq−2ρpq−8ρ+8α+2q+pq+4

8(α+1)(q+1)
−ς· (2α+1)(2q+pq+4)+4γ(q+1)

8(α+1)(q+1)
n

= xλ
8α(q+1)−2ρ(α+1)(2q+pq+4)+2q+pq+4

8(α+1)(q+1)
−ς· (2α+1)(2q+pq+4)+4γ(q+1)

8(α+1)(q+1)
n

= xλ
α

α+1
− 2ρ(α+1)−1

2(α+1)
· 2q+pq+4

4(q+1)
−ς· (2α+1)(2q+pq+4)+4γ(q+1)

8(α+1)(q+1)
n . (59)

Let us compare the first and the second term of the expression for ε(n, a,B, c, δ, x) given in Remark
6.7: since 2q + pq + 4 ≤ 4(q + 1) and 2ρ(α + 1) − 1 > 0 we have 2ρ(α+1)−1

2(α+1) · 2q+pq+4
4(q+1) ≤ 2ρ(α+1)−1

2(α+1)

and (2α+1)(2q+pq+4)+4γ(q+1)
8(α+1)(q+1) ≤ (2α+1)(2q+pq+4)+4γ(q+1)

2(α+1)(2q+pq+4) . This shows

λ
α

α+1
− 2ρ(α+1)−1

2(α+1)
· 2q+pq+4

4(q+1)
−ς· (2α+1)(2q+pq+4)+4γ(q+1)

8(α+1)(q+1)
n ≤ λ

α
α+1

− 2ρ(α+1)−1
2(α+1)

−ς· (2α+1)(2q+pq+4)+4γ(q+1)
2(α+1)(2q+pq+4)

n , (60)

and therefore (58) and (59) implies B
p
2 δ

2−p
4

(
a
n

) 1
2 � B

2p(q+1)
2q+pq+4 c

(2−p)(q+1)
2q+pq+4

(
a
n

) 2(q+1)
2q+pq+4 , i.e. the first term

dominates the second term. Let us now treat the third term B
(

a
n

) 2
2+p in Remark 6.7. Since

Ba
2

2+p ∼ xλ−ρ
n λ

− γ
α+1

· 2
2+p

n ∼ xλ
− ρ(α+1)(2+p)+2γ

(α+1)(2+p)
n
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we find

B
(a

n

) 2
2+p ∼ xλ

− ρ(α+1)(2+p)+2γ
(α+1)(2+p)

n n− 2
2+p

= xλ
− ρ(α+1)(2+p)+2γ

(α+1)(2+p)
n λ

1−ς
(α+1)(2+p)β
n

= xλ
− 2ρ(α+1)(2+p)(q+1)+4γ(q+1)

2(α+1)(2+p)(q+1)
n λ

(1−ς)· (2α+1)(2q+pq+4)+4γ(q+1)
2(α+1)(2+p)(q+1)

n

= xλ
(1−ς)(2α+1)(2q+pq+4)−4ςγ(q+1)−2ρ(α+1)(2+p)(q+1)

2(α+1)(2+p)(q+1)
n .

Since ς ≤ 1
5 we have (1−ς)(2q+4)−8ς(q+1) > 0 and hence (1−ς)(2α+1)(2q+pq+4)−4ςγ(q+1) > 0.

Therefore, we obtain

λ
− ρ(α+1)(2+p)+2γ

(α+1)(2+p)
n n− 2

2+p = λ
(1−ς)(2α+1)(2q+pq+4)−4ςγ(q+1)−2ρ(α+1)(2+p)(q+1)

2(α+1)(2+p)(q+1)
n

≤ λ
(1−ς)(2α+1)(2q+pq+4)−4ςγ(q+1)−2ρ(α+1)(2q+pq+4)

2(α+1)(2q+pq+4)
n

= λ
α

α+1
− 2ρ(α+1)−1

2(α+1)
−ς· (2α+1)(2q+pq+4)+4γ(q+1)

2(α+1)(2q+pq+4)
n .

Using (58) and p < 2 this shows B
(

a
n

) 2
2+p � B

2p(q+1)
2q+pq+4 c

(2−p)(q+1)
2q+pq+4

(
a
n

) 2(q+1)
2q+pq+4 , i.e. the first term

dominates the third term. Furthermore, for the fourth term
√

δx
n we obtain

√
δx � x2λ

αq−ρ(q+2)(α+1)
2(α+1)(q+1)

n � x2λ
2αq−2ρ(q+2)(α+1)−αpq−pqρ(α+1)

4(α+1)(q+1)
n λ

− γ
2(α+1)

n

∼ x2λ
αq(2−p)−ρ(α+1)(2q+pq+4)

4(α+1)(q+1)
n λ

− γ
2(α+1)

n

by a crude estimate. As in (59) and (60) we hence see that the fourth term is dominated by the first

term combined with an additional factor x, i.e.
√

δx
n � xB

2p(q+1)
2q+pq+4 c

(2−p)(q+1)
2q+pq+4

(
a
n

) 2(q+1)
2q+pq+4 . Moreover,

parts of the fifth term
(

cx
n

) q+1
q+2 become

c
q+1
q+2 ∼ xλ−ρ

n � xλ
− ρ(α+1)(2q+pq+4)+2γ(q+1)

(α+1)(2q+pq+4)
n ,

which shows
(

cx
n

) q+1
q+2 � xB

2p(q+1)
2q+pq+4 c

(2−p)(q+1)
2q+pq+4

(
a
n

) 2(q+1)
2q+pq+4 by (57), (58), and q+1

q+2 > 2(q+1)
2q+pq+4 . Finally,

the sixth term Bx
n is obviously dominated by the third term in the sense of Bx

n � Bx
(

a
n

) 2
2+p and

thus Bx
n � xB

2p(q+1)
2q+pq+4 c

(2−p)(q+1)
2q+pq+4

(
a
n

) 2(q+1)
2q+pq+4 . Putting the above considerations together Remark 6.7

gives us

ε(n, a,B, c, δ, x) � x2λ
α

α+1
− 2ρ(α+1)−1

2(α+1)
−ς· (2α+1)(2q+pq+4)+4γ(q+1)

2(α+1)(2q+pq+4)
n .

By Theorem 5.5 there is therefore a constant C̃1 > 0 independent of n and x such that for all n ≥ 1
and all x ≥ 1 the estimate

λn‖f̂T,λn‖2 ≤ λn‖f̂T,λn‖2 + Rl,P (f̂T,λn) −Rl,P

≤ λn‖f̂P,λn‖2 + Rl,P (f̂P,λn) −Rl,P + C̃1x
2λ

α
α+1

− 2ρ(α+1)−1
2(α+1)

−ς· (2α+1)(2q+pq+4)+4γ(q+1)
2(α+1)(2q+pq+4)

n

holds with probability not less than 1−e−x. Now, it is easy to see that λ‖fP,λ‖2 ≤ aσn(λn) � λ
α

α+1
n

yields ‖fP,λn‖ � λ
− 1

2(α+1)
n . Since ρ > 1

2(α+1) this implies ‖fP,λn‖ ≤ λ−ρ
n ≤ Cxλ−ρ

n for large n.
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In other words, for large n we have fP,λn = f̂P,λn as in the previous proofs. Consequently, with
probability not less than 1 − e−x we have

λn‖f̂T,λn‖2 ≤ λn‖fP,λn‖2 + Rl,P (fP,λn) −Rl,P + C̃1x
2λ

α
α+1

− 2ρ(α+1)−1
2(α+1)

−ς· (2α+1)(2q+pq+4)+4γ(q+1)
2(α+1)(2q+pq+4)

n

≤ C̃2λ
α

α+1
n + C̃1x

2λ
α

α+1
− 2ρ(α+1)−1

2(α+1)
−4ς

n

and hence

‖f̂T,λn‖ ≤ C̃3xλ
α

2(α+1)
− 2ρ(α+1)−1

4(α+1)
− 1

2
−2ς

n = C̃3xλ
− 1

4(α+1)
− ρ

2
−2ς

n = C̃3xλ−ρ̂
n .

Let us now prove the assertion for q = 0. By Proposition 6.3 and assumption (55) we observe that
we may choose B, a and c such that

B ∼ xλ−ρ
n

a ∼ λ
− γ

α+1
n

c ∼ λ−1
n .

In order to apply Theorem 5.5 our first aim is to simplify the expression for ε(n, a,B, c, δ, x) given

in Remark 6.4. Using n = λ
− (2α+1)(2q+pq+4)+4γ(q+1)

4(α+1)(q+1)
·(1−ς)

n the first term can be bounded by

B
2p

2+p c
2−p
2+p a

2
2+p n− 2

2+p � xλ
2α−2αpρ−2pρ+αp+p

(2+p)(α+1)
−4ς

n .

Furthermore, the second term can be estimated by

xBa
2

2+p n
− 2

2+p � x2λ
2α−2αpρ−2pρ+αp+p

(2+p)(α+1)
−4ς

n .

Finally, the third term can be bounded by

cx

n
∼ xλ−1

n λ
2α+1+γ

α+1
−ς· 2α+1+γ

α+1
n � xλ

α+γ
α+1

−4ς
n � x2λ

2α−2αpρ−2pρ+αp+p
(2+p)(α+1)

−4ς
n ,

where in the last step we used ρ > 1
2(α+1) . Putting the above considerations together Remark 6.4

gives us

ε(n, a,B, c, δ, x) � x2λ
2α−2αpρ−2pρ+αp+p

(2+p)(α+1)
−4ς

n .

By Theorem 5.5 there is therefore a constant C̃1 > 0 independent of n and x such that for all n ≥ 1
and all x ≥ 1 the estimate

λn‖f̂T,λn‖2 ≤ λn‖f̂T,λn‖2 + Rl,P (f̂T,λn) −Rl,P

≤ λn‖f̂P,λn‖2 + Rl,P (f̂P,λn) −Rl,P + C̃1x
2λ

2α−2αpρ−2pρ+αp+p
(2+p)(α+1)

−4ς
n

holds with probability not less than 1− e−x. As in the case q > 0 we find fP,λn = f̂P,λn for all large
n. With probability not less than 1 − e−x this gives

λn‖f̂T,λn‖2 ≤ λn‖fP,λn‖2 + Rl,P (fP,λn) −Rl,P + C̃1x
2λ

2α−2αpρ−2pρ+αp+p
(2+p)(α+1)

−4ς
n

≤ C̃2λ
α

α+1
n + C̃1x

2λ
2α−2αρ−2ρ+1

2(α+1)
−4ς

n

= C̃2λ
α

α+1
n + C̃1x

2λ
α

α+1
− 2ρ(α+1)−1

2(α+1)
−4ς

n ,

where we used ρ > 1
2(α+1) and p < 2. From this we obtain the assertion as for q > 0.
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The next theorem establishes almost the result of Theorem 2.16. We present this intermediate
result because it clarifies the impact of covering number bounds of the form (55) on our rates.

Theorem 10.2 Let X be the closed unit ball of the Euclidian space R
d, and P be a distribution

on X × Y with Tsybakov noise exponent 0 ≤ q ≤ ∞ and geometric noise exponent 0 < α < ∞.
Finally, let us assume that we can bound the covering numbers by (55) for some 0 < γ ≤ 2 and
0 < p < 2. Given an 0 ≤ ς < 1

5 we define

λn := n
− 4(α+1)(q+1)

(2α+1)(2q+pq+4)+4γ(q+1)
· 1
1−ς

and
σn := λ

− 1
(α+1)d

n

Then for all ε > 0 there is a constant C > 0 such that for all x ≥ 1 and all n ≥ 1 the L1-
SVM without offset and with regularization parameter λn and Gaussian RBF kernel with width σn

satisfies

Pr∗
(
T ∈ (X × Y )n : RP (fT,λn) ≤ RP + Cx2n

− 4α(q+1)
(2α+1)(2q+pq+4)+4γ(q+1)

· 1
1−ς

+20ς+ε
)

≥ 1 − e−x .

If q > 0 then the same result is true for L1-SVM’s with offset.

Proof: Since the proof is very similar to the proof of Theorem 2.4 we only sketch it. Iteratively
using Lemma 10.1 we find a constant C ≥ 1 such that for ρ := 1

2(α+1) + 4ς + ε and all n ≥ 1, x ≥ 1
we have

Pr∗
(
T ∈ (X × Y )n : ‖fT,λn‖ ≤ Cxλ−ρ

n

)
≥ 1 − e−x .

Repeating the calculations of Lemma 10.1 (distinguish between the cases q > 0 and q = 0) we
hence find a constant C̃ > 0 such that for all n ≥ 1 and all x ≥ 1 we have

λn‖fT,λn‖2 + Rl,P (fT,λn) −Rl,P ≤ λn‖fP,λn‖2 + Rl,P (fP,λn) −Rl,P + C̃1x
2λ

α
α+1

− 2ρ(α+1)−1
2(α+1)

−4ς
n

with probability not less than 1 − e−x. By the definition of ρ we obtain

λ
α

α+1
− 2ρ(α+1)−1

2(α+1)
−4ς

n ≤ λ
α

α+1
−4ς−ε−4ς

n ≤ n
− 4α(q+1)

(2α+1)(2q+pq+4)+4γ(q+1)
· 1
1−ς

+20ς+3ε
.

From this we easily deduce the assertion.

In order to prove Theorem 2.16 recall that by Theorem 2.15 we can choose γ := (1 − p
2 )(1 + δ)

for all δ > 0. The idea of the proof of Theorem 2.16 is to let δ → 0 while simultaneously adjusting
ς. The resulting rate is then optimized with respect to p. Unfortunately, a rigorous proof requires
to choose p a-priori. Therefore, the optimization step is somewhat hidden in the following proof:

Proof of Theorem 2.16: Let us first consider the case α ≤ q+2
2q . Our aim is to apply Theorem

10.2. To this end we write pδ := 2− δ and γδ := (1− pδ
2 )(1 + δ) = δ

2(1 + δ) for δ > 0. Furthermore,
we define ςδ by

4(α + 1)(q + 1)
(2α + 1)(4q − δq + 4) + 4γδ(q + 1)

· 1
1 − ςδ

=
α + 1
2α + 1

.

Since 2αq − q − 2 ≤ 0 < 2δ(q + 1) we have q(2α + 1) < 2(1 + δ)(q + 1) and hence

4(2α + 1)(q + 1) < 4(2α + 1)(q + 1) − δq(2α + 1) + 2δ(1 + δ)(q + 1) .
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This shows ςδ > 0 for all δ > 0. Furthermore, these definitions also imply ςδ → 0 and γδ → 0
whenever δ → 0. Now, Theorem 10.1 tells us that for all ε > 0 and all small enough δ > 0 there
exists a constant Cδ,ε ≥ 1 such that for all n ≥ 1, x ≥ 1 we have

Pr∗
(
T ∈ (X × Y )n : RP (fT,λn) ≤ RP + Cδ,εx

2n
− 4α(q+1)

(2α+1)(4q−δq+4)+4γδ (q+1)
· 1
1−ςδ

+20ςδ+ε
)

≥ 1 − e−x .

In particular, if we choose δ sufficiently small we find the assertion.
Let us now consider the case q+2

2q < α < ∞. In this case we write pδ := δ and γδ := (1− pδ
2 )(1+δ) =

1 + δ
2 − δ2

2 for δ > 0. Furthermore, we define ςδ by

4(α + 1)(q + 1)
(2α + 1)(2q + δq + 4) + 4γδ(q + 1)

· 1
1 − ςδ

=
2(α + 1)(q + 1)

2α(q + 2) + 3q + 4
.

Since for 0 < δ ≤ 1 we have 0 < δq(2α + 1) + 2δ(q + 1) − 2δ2(q + 1) we easily check ςδ > 0.
Furthermore, the definitions ensure ςδ → 0 and γδ → 1 whenever δ → 0. The rest of the proof
follows that of the first case.
Finally, let us treat the case α = ∞. We define αλ by log λ = αλd log 2

√
d

σ . Since σ > 2
√

d we have
αλ > 0 for all 0 < λ < 1. Furthermore, applying Theorem 2.14 for αλ we find a(λ) ≤ 2Cdλ for all
0 < λ < 1 and a constant Cd > 0 depending only on the dimension d. It is easy to see that we are
hence in the situation of Theorem 2.4 for “β = 1” (in the sense of Remark 2.9) and p arbitrarily
close to 0.
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[6] J. Bergh and J. Löfström. Interpolation Spaces, An Introduction. Springer-Verlag, New York,
1976.

[7] M. Sh. Birman and M. Z. Solomyak. Piecewise-polynomial approximations of functions of the
classes W α

p (russian). Mat. Sb., 73:331–355, 1967.

[8] O. Bousquet. A Bennet concentration inequality and its application to suprema of empirical
processes. C. R. Math. Acad. Sci. Paris, 334:495–500, 2002.

[9] P. L. Butzer and H. Berens. Semi-groups of operators and approximation. Springer-Verlag,
New York, 1967.

[10] B. Carl and I. Stephani. Entropy, Compactness and the Approximation of Operators. Cam-
bridge University Press, 1990.

47



[11] R. Courant and D. Hilbert. Methods of Mathematical Physics. Interscience Publishers, New
York, first english edition, 1953.

[12] F. Cucker and S. Smale. On the mathematical foundations of learning. Bull. Amer. Math.
Soc., 39:1–49, 2002.

[13] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer,
New York, 1997.

[14] J. Howse, D. Hush, and C. Scovel. Linking learning strategies and performance for support
vector machines. http://www.c3.lanl.gov/ml/pubs_select.shtml, 2002.

[15] D. Hush, C. Scovel, and I. Steinwart. Stability of unstable learning algorithms. http://www.
c3.lanl.gov/~ingo/publications/ml-03.ps, 2003.
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11 Appendix

In this section we prove the theorems of Section 3. We begin by deriving some elementary but useful
properties of the approximation error function. In particular we are interested in the question how
the approximation error function influences the map λ �→ ‖fP,λ‖.

Recall that Lemma 3.1 shows that f∗
P,λ is well defined. We now compare f∗

P,λ and fP,λ in terms
of their L risk and their norm:

Lemma 11.1 For λ > 0 we have RL,P (f∗
P,λ) ≤ RL,P (fP,λ) and ‖fP,λ‖ ≤ ‖f∗

P,λ‖.

Proof: The first assertion follows from ‖fP,λ‖2 ≤ 1/λ. Then using the first assertion we find

λ‖fP,λ‖2 + RL,P (f∗
P,λ) ≤ λ‖fP,λ‖2

H + RL,P (fP,λ) ≤ λ‖f∗
P,λ‖2

H + RL,P (f∗
P,λ) ,

i.e. λ‖fP,λ‖2 ≤ λ‖f∗
P,λ‖2.

In the following we say that f ∈ H minimizes the L-risk in H if RL,P (f) = RL,P,H . If no
confusion can occur we denote such functions by fL,P,H . The next lemmas describe the situation
in which such a minimizer exists. We begin with a simple observation:

Lemma 11.2 Assume that there is a minimizer fL,P,H ∈ H. Then there exists a unique element
f∗

L,P,H ∈ H minimizing the L-risk in H with ‖f∗
L,P,H‖ ≤ ‖f‖ for all f ∈ H minimizing the L risk

in H. Furthermore, we have ‖fP,λ‖ ≤ ‖f∗
L,P,H‖ for all λ > 0.

Proof: The first assertion is a direct consequence of Lemma 3.1 for λ = 1/‖fL,P ‖2 and the second
assertion follows from Lemma 11.1.

The next lemma shows that for λ → 0 through positive values the infinite sample versions fP,λ

converge to f∗
L,P,H ∈ H whenever the latter exists. If H is a universal kernel, i.e. it is dense in

C(X), P is an empirical distribution based on a training set T , and L is the (squared) hinge loss
function then f∗

L,T,H ∈ H coincides with the hard margin SVM solution. This shows that both
the L1-SVM and the L2-SVM solutions fT,λ converge to the hard margin solution if T is fixed and
λ → 0.
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Lemma 11.3 Assume that there is a minimizer fL,P,H ∈ H. Then for all positive sequences
λn → 0 we have fP,λn → f∗

L,P with respect to the norm of H.

Proof: By Lemma 11.2 we have ‖fP,λn‖ ≤ ‖f∗
L,P,H‖ and thus there exists an f∗ ∈ H and a subse-

quence (fP,λni
) with fP,λni

→ f∗ weakly. This implies RL,P (fP,λni
) → RL,P (f∗). Furthermore, we

always have λni‖fP,λni
‖2 → 0 and thus

RL,P,H = lim
i→∞

λni‖fP,λni
‖2 + RL,P (fP,λni

) = RL,P (f∗) .

Here, the first equality can be shown as in [28] for universal kernels. In other words f∗ minimizes
the L-risk in H. Hence by Lemma 11.2 we find

‖fP,λni
‖ ≤ ‖f∗‖ ≤ lim inf

i→∞
‖fP,λni

‖ ,

i.e. ‖fP,λni
‖ → ‖f∗‖. This yields

‖fP,λni
− f∗‖2 = ‖fP,λni

‖2 − 2〈fP,λni
, f∗〉 + ‖f∗‖2 → ‖f∗‖2 − 2‖f∗‖2 + ‖f∗‖2 = 0 .

Furthermore, ‖fP,λni
‖ → ‖f∗‖ together with ‖fP,λni

‖ ≤ ‖f∗
L,P,H‖ implies ‖f∗‖ ≤ ‖f∗

L,P,H‖, i.e. f∗ =
f∗

L,P,H by Lemma 11.2. Now assume that fP,λn �→ f∗
L,P,H . Then there exists a δ > 0 and a

subsequence (fP,λnj
) with ‖fP,λnj

− f∗
L,P,H‖ > δ. On the other hand applying the above reasoning

to this subsequence gives a sub-subsequence converging to f∗
L,P,H and hence we have found a

contradiction.

The next lemma characterizes the existence of f∗
L,P,H ∈ H in terms of the function λ �→ ‖fP,λ‖:

Lemma 11.4 There exists an element fL,P,H ∈ H minimizing the L-risk in H if and only if there
exists a constant c > 0 with ‖fP,λ‖ ≤ c for all λ > 0.

Proof: If there exists an element fL,P ∈ H minimizing the L-risk we can set c := ‖f∗
L,P‖. On

the other hand if ‖fP,λ‖ ≤ c for some c > 0 and all λ > 0 there exists an f∗ ∈ H and a sequence
(fP,λn) with fP,λn → f∗ weakly. As in the first part of the proof of Lemma 11.3 we easily see that
f∗ minimizes the L-risk in H.

The following lemma which shows that fP,λ is a solution of (20) for a suitably chosen size of
the underlying ball is somewhat well known:

Lemma 11.5 When γ := 1/‖fP,λ‖2, we have f∗
P,γ = fP,λ.

Proof: We first show that fP,λ minimizes (20) for regularization parameter γ. Assume that this
does not hold. Then we have

RL,P (f∗
P,γ) < RL,P (fP,λ) .

Since we also have ‖f∗
P,γ‖ ≤ 1/

√
γ = ‖fP,λ‖ we find

λ‖f∗
P,γ‖2 + RL,P (f∗

P,γ) < λ‖fP,λ‖2 + RL,P (fP,λ)

which contradicts the definition of fP,λ. Hence fP,λ minimizes (20) for regularization parameter γ.
Now assume that fP,λ �= f∗

P,γ , i.e. ‖fP,λ‖ > ‖f∗
P,γ‖. Since RL,P (f∗

P,γ) = RL,P (fP,λ) we then have

λ‖f∗
P,γ‖2 + RL,P (f∗

P,γ) < λ‖fP,λ‖2 + RL,P (fP,λ)

which again contradicts the definition of fP,λ.
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The next lemma compares the size of the norms of solutions for different λ with the correspond-
ing L-risks:

Lemma 11.6 For all λ1, λ2 > 0 we have

‖fP,λ1‖ ≥ ‖fP,λ2‖ if and only if RL,P (fP,λ1) ≤ RL,P (fP,λ2) .

Proof: Assume that ‖fP,λ1‖ ≥ ‖fP,λ2‖ but RL,P (fP,λ1) > RL,P (fP,λ2). Then we find

λ1‖fP,λ2‖2 + RL,P (fP,λ2) < λ1‖fP,λ1‖2 + RL,P (fP,λ1)

which contradicts the definition of fP,λ1. Analogously, if RL,P (fP,λ1) ≤ RL,P (fP,λ2) but ‖fP,λ1‖ <
‖fP,λ2‖ we find

λ2‖fP,λ1‖2 + RL,P (fP,λ1) < λ2‖fP,λ2‖2 + RL,P (fP,λ2)

which contradicts the definition of fP,λ2.

Proof of Theorem 3.2: It is clear from the definitions (21) that A(0) = A∗(0) = 0 and A∗(.)
is increasing. Since A(.) is an infimum over a family of concave (linear) increasing functions of
λ it follows that A(.) is also concave and increasing. Consequently Theorem 10.1 in [26] on the
continuity of concave functions implies that A(.) is continuous for λ > 0. Continuity at 0 follows
from the proof of Proposition III.3 in [28] completing the proof of the first assertion. To prove
the second assertion, observe that Lemma 11.1 implies A∗(λ) ≤ A(λ) for all λ > 0 and since
A(0) = A∗(0) we obtain A∗(λ) ≤ A(λ) for all λ ≥ 0. Now let ε := h(λ) and λ̃ := ε‖f∗

P,λ‖−2. Then
we find

λ̃‖fP,λ̃‖2 + RL,P (fP,λ̃) ≤ λ̃‖f∗
P,λ‖2 + RL,P (f∗

P,λ) = λ̃‖f∗
P,λ‖2 + RL,P,H + ε ≤ RL,P,H + 2ε .

This shows A(λ̃) ≤ 2h(λ). Furthermore we have λh(λ) ≤ ε‖f∗
P,λ‖−2 = λ̃ and thus the assertion

follows since A(.) is an increasing function.

Proof of Theorem 3.3: If λ �→ ‖fP,λ‖ is bounded on (0,∞) there exists an fL,P,H ∈ H minimiz-
ing the L-risk in H by Lemma 11.4. This yields

A(λ) = λ‖fP,λ‖2 +RL,P (fP,λ)−RL,P,H ≤ λ‖f∗
L,P,H‖2 +RL,P (f∗

L,P,H)−RL,P,H = λ‖f∗
L,P,H‖2 .

Conversely, if there exists a constant C > 0 with A(λ) ≤ Cλ we find

λ‖fP,λ‖2 ≤ A(λ) ≤ Cλ

which shows ‖fP,λ‖ ≤ √
C for all λ > 0 proving the first assertion.

Now let us assume A∗(λ) � λα for some α > 0. Then from Theorem 3.2 we know A(λ1+α) � λα

which leads to A(λ) � λ
α

α+1 . The latter immediately implies ‖fP,λ‖2 � λ− 1
α+1 . Conversely, if

A(λ) � λ
α

α+1 we define γ := ‖fP,λ‖−2. By Lemma 11.5 we then obtain

A∗(γ) = RL,P (f∗
P,γ) −RL,P = RL,P (fP,λ) −RL,P ≤ c1λ

α
α+1 ≤ c2‖fP,λ‖−2α = γα

for some constants c1, c2 > 0 independent of γ. Now, if there is no fL,P,H ∈ H minimizing the
L-risk in H the function λ �→ ‖fP,λ‖−2 tends to 0 if λ → 0 and thus A∗(λ) � λα. If there is an
fL,P,H ∈ H minimizing the L-risk in H the assertion is trivial.
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For the third assertion recall that Lemma 11.5 states fP,λ = f∗
P,γ with γ := ‖fP,λ‖−2 and hence we

find
A(λ) = λ‖fP,λ‖2 + A∗(‖fP,λ‖−2

)
. (61)

Furthermore, we have already seen ‖fP,λ‖−2 � λ
1

α+1 . By our assumption we hence get

λ
α

α+1 � RL,P (fP,λ) −RL,P = A∗(‖fP,λ‖−2
) � ‖fP,λ‖−2(α+ε) � λ

α+ε
α+1 .

Combining this with (61) yields the third assertion.
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