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ABSTRACT

A STUDY OF MATE SELECTION
IN GENETIC ALGORITHMS

by
Chien-Feng Huang

Co-Chairs: John H. Holland and Rick Riolo

The process of information exchange among the population of individuals ma-

nipulated by Genetic Algorithms (GAs) involves two key components: crossover and

mate selection. The central theme of this thesis concentrates on the investigation of

effects of mate selection in GAs. The importance of mate selection in biology is

widely recognized, yet a systematic investigation of this subject in GA research is still

lacking. The goal of this thesis is to propose a framework that facilitates exploration

of mate selection in GAs in order to (1) gain a deeper understanding of how GAs

work, (2) how to design more robust GAs, and (3) shed more light on why mate

selection matters in biology.

The first four chapters of this thesis present motivations for this work, and describe

investigations of the basic properties of mate selection in the context of GA. I employ

the Schema Theorem and a Markov model as analytical tools to facilitate the study

of mate selection. A number of empirical results are also presented to enhance our

understanding of the GAs’ behavior. The results based on simple test problems

highlight the importance of mating choices in improving the GA’s performance.

Next, this study focuses on two classes of more complicated, building-block-based

problems—the Royal Road functions and the hyperplane-defined functions. With the



results further obtained, I introduce an important hypothesis regarding the role of

mate selection in GAs. That is, if one’s goal is to improve the GA’s search for best-

so-far solutions, then on easy problems a dissimilarity-based mate selection scheme

is more beneficial. If problems present sufficient difficulty, the GA’s search power

can be further improved by by reducing the selection pressure toward higher-fitness

individuals while selecting mates.

Chapter 6 presents a test of this hypothesis based on several more realistic, non-

building-block-based benchmark testbeds. The test problems used are of increasing

complexity in terms of various aspects of fitness landscapes. The first two testbeds, a

sphere function and a step function, represent unimodal problems. The following four

testbeds are multimodal in which characteristics of fitness landscapes such as decep-

tion and non-separability are included—the generalized Rosenbrock Saddle, an opti-

mal control problem, a modified version of the Schaffer function F7 and Michalewicz’s

epistatic function. All the results of the experiments validate this hypothesis. This is

encouraging—it implies that the ideas of mate selection proposed in this thesis can

be applied to practical problems.

Chapter 7 discusses a more general setting in the context of multimodal func-

tion optimization, engineering and machine learning. Identifying multiple peaks and

maintaining subpopulations of the search space are two central themes. An immune

system model is employed to study these two problems. The experimental results in-

deed shed more light on how mate selection schemes compare to traditional selection

schemes.

The final chapter provides a summary of this thesis, and highlights its contri-

butions to GA research. It discusses paths for future research, and draws overall

conclusions from the research presented in this thesis.
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CHAPTER 1

INTRODUCTION

1.1 Evolutionary Algorithms

During the last two decades there has been a growing interest in algorithms that

are based on the principle of evolution, i.e., survival of the fittest. A common term,

accepted recently, refers to such techniques as evolutionary algorithms (EAs) (or evo-

lutionary computation). EAs use computational models of evolutionary processes as

key components in the design and implementation of computer-based problem solving

systems. There are a variety of evolutionary computational models that have been

proposed and studied. They are conveniently presented using the metaphor of natural

evolution: a randomly initialized population of individuals (set of points of the search

space at hand) evolves following an idealized model of the Darwinian principle of the

survival of the fittest. New individuals are generated through variation introduced

by operators such as recombination and mutation. The probability of survival of

the newly generated solutions depends on their fitness (perceived performance in the

environment): the probability of selection is an increasing function of fitness, so that

the best are kept with a high probability, the worst are rapidly discarded. Although

simplistic from a biologist’s viewpoint, these algorithms are sufficiently complex to

provide robust and powerful adaptive search mechanisms.

There are several variants of EAs and each of them may be distinguished by differ-

ent selection schemes and variation operators, yet the structure of any evolutionary

1



Table 1.1: The structure of an evolutionary algorithm.

1. t = 0.

2. Randomly generate an initial population of n individuals.

3. Evaluate each individual’s fitness.

4. Repeat until n offspring have been created.

t = t + 1;
select parents;
generate offspring by altering the parents;
evaluate the offspring.

5. Replace the current population with the new population.

6. Go to Step 3 until terminating condition.

model is very similar. Table 1.1 outlines a sample EA structure. Typically, a pop-

ulation of n individuals is initialized randomly and then evolved from generation t

to generation t + 1 by repeated fitness evaluation, selection, and variation. Fitness

evaluation may be as simple as computing a mathematical function or as complex

as running an elaborate simulation. Individuals are then selected for survival and

reproduction. Many selection schemes have been developed, including (1) fitness-

proportionate selection (Holland, 1975), where the probability of selection is propor-

tional to the individual’s fitness, (2) sigma-scaling selection (Forrest, 1985), which

keeps the selection pressure relatively constant over the course of the run rather than

depending on the fitness variances in the population, (3) rank selection (Baker, 1985),

in which the individuals in the population are sorted according to their fitnesses, and

the probability of an individual being selected depends on its rank in the population

rather than on its absolute fitness, and (4) tournament selection (Goldberg and Deb,

2



1991), where some number of individuals (usually two) compete for selection and

this competition step is repeated population-size number of times. After selection,

individuals are perturbed by variation operators such as crossover, mutation, and

others.

The origins of evolutionary algorithms can be traced to at least the 1950’s (Fraser

1957; Box 1957). As of today, there are four dominant methodologies: “Genetic

Algorithms” (Holland, 1975), “Genetic Programming” (Koza, 1992),“Evolutionary

Programming” (Fogel, Owens, and Walsh, 1966), “Evolutionary Strategies” (Rechen-

berg, 1973; Schwefel, 1981). In the next section, I briefly describe the ideas and

mechanism of the most well known EA, the Genetic Algorithm. This type of EA is

the central theme of this thesis.

1.2 Genetic Algorithms

The Genetic algorithm (GA), developed by Holland (1975), is based on the me-

chanics of natural selection and natural genetics. The term genetic algorithm de-

scribes the basic idea: algorithmic techniques, inspired by genetic principles, are used

to study the phenomenon of adaptation as it occurs in nature. The objective is to

design and implement robust, adaptive systems, following nature’s paradigm for the

evolution of genetic structures.

Table 1.2 depicts the process of a simple genetic algorithm, where the variation

step in Table 1.1 is implemented by crossover and mutation operators. Tradition-

ally, GAs have used a domain independent representation, namely, binary strings

(chromosomes) for population individuals. A population of n individual structures is

initialized, each bit value taking 1 or 0 with equal probability. After initialization,

pairs of parent chromosomes are selected for reproduction, and the probability of

individuals being selected is an increasing function of fitness. A common selection

scheme in GAs is fitness-proportional selection, in which the number of times an indi-
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Table 1.2: Mechanism of a simple GA.

1. Randomly generate an initial population of n individuals.

2. Evaluate each individual’s fitness.

3. Repeat until n offspring have been created.

a. select a pair of parents for mating;
b. apply crossover operator;
c. apply mutation operator.

4. Replace the current population with the new population.

5. Go to Step 2 until terminating condition.

vidual expected to reproduce is equal to its fitness divided by the average of fitnesses

in the population. With this selection method the average fitness of the population is

monitored. Those individuals that have higher than average fitness produce (on the

average) more than one child, while those that have less than average fitness produce

(on the average) less than one child. This is normalized appropriately to produce n

children, which are created via crossover and mutation from the n parents. The n

children then replace the n parents in the population.

Holland (1975) formulated the theoretical foundation of GA by the notion of

schemata, which are sub-structures of strings. Holland likened these schemata to

the random variables associated with K-armed bandit problems, and argued that

the GA maximizes accumulated payoff by optimizing the allocation of trials to those

random variables. His analysis suggests that selection increasingly focuses the search

on subsets of the search space with estimated above-average fitness. These results

form the fundamental theorem of Genetic Algorithm, namely, the Schema Theorem

(Holland, 1975):
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“Short, low-order, above-average schemata receive exponentially increasing trials

in subsequent generations of a genetic algorithm.”

Another key idea that parallels this theorem is that GAs explore the search space

by short, low-order, high-fit schemata which, subsequently, are recombined to form

even more highly fit higher-order schemata by crossover. This statement is well known

as the Building Block Hypothesis (Holland, 1975; Goldberg, 1989).

The ability to produce fitter and fitter partial solutions by combining building

blocks is believed to be a primary source of the GA’s search power; thus crossover has

been considered to be the primary search operator that distinguishes GAs from most

other search algorithms. Mutation, on the other hand, was regarded as a background

operator that serves as the role of an insurance policy, ensuring that genetic diversity

is never lost at any locus.

It is worth noting that higher mutation rates increasingly disrupt higher order

schemata, while higher crossover rates increasingly disrupt higher defining-length

schemata. When selection is factored in, a population converges at a rate propor-

tional to the ratio of the best individual’s fitness to average population fitness. This

ratio is one measure of selection pressure (Back, 1994). Increasing either crossover

or mutation rate, or decreasing the selection pressure, leads to wider sampling of the

search space, but does not allow as much exploitation of useful schemata that the GA

locates. On the other hand, decreasing either crossover or mutation rate, or increas-

ing the selection pressure, leads to increased use of the beneficial building blocks, but

does not allow as much exploration of the search space. This is commonly known as

a tension between “exploration” (the search for new, useful building blocks) and “ex-

ploitation” (the use and propagation of these building blocks). In general, a robust

GA must maintain an often delicate balance between exploration and exploitation so

as to well adapt to its environment.
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1.2.1 Sex in Evolution

The idea of information exchange among a GA’s population of individuals through

crossover, in a broad sense, can be regarded as modeling sex. When population

geneticists talk about sex, what they usually mean is reproduction involving (1)

meiosis with crossing over; and (2) mating between unrelated individuals, such as

occur during random mating (Freeman and Herron, 1998, p. 197). As such, sex

in evolution involves two key components: crossover and mate selection. This

subsection discusses the prevalence of crossover and mate selection in the context of

GA.

Crossover

In biology, there are four main explanations proposed for the importance of

crossover (Holland, 2000):

• Crossover provides long (random) jumps in the space of possibilities, thus pro-

viding a way off of local maxima.

• Crossover repairs mutational damage by sequestering deleterious mutations in

some offspring while leaving other offspring free of them.

• Crossover provides persistent variation that enables organisms to escape adap-

tive targeting by viruses, bacteria, and parasites.

• Crossover recombines building blocks.

In GA research, crossover has received extensive exploration since the seminal

work of John Holland in the 1960s. The idea behind crossover was to take sub-parts

from individuals that supply different sub-solutions and combine them to improve

solutions. Among several versions of crossover operators, single-point crossover is the

simplest form: it was defined (Holland, 1975) as taking two strings representing par-

ents and exchanging the set of attributes that follow a randomly chosen position to
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form offspring. Other forms of crossover have been investigated, such as two-point, n-

point crossover, and uniform crossover (Syswerda, 1989; Spears and De Jong, 1991a).

In contrast with these problem-independent operators, another research line was con-

ducted to investigate self-adaptive crossover mechanisms (Schaffer and Morishima,

1987; Spears, 1995). Riopka and Bock (2000) also implemented intelligent recombi-

nation through the learning of GAs’ individuals. On the other hand, Jones (1995)

investigated crossover from an entirely different perspective: it is in essence a “macro-

mutation” operator that simply performs large jumps in the search space. In addition,

Chen (1999) and Watson and Pollack (2000) have noted two different properties of

crossover: preservation of similarity and combination of differences.

Mate Selection

Another relevant issue of the role of sex in evolution is mate selection, or mating

strategies. In biology, mating strategies are generally classified as random mating

and non-random mating. Random mating is referred to as panmixia, where each

individual member of a population has an equal chance (probability) of mating with

every other individual of the opposite sex. In this case, the probability of mating is

not determined by genotype; each individual mates without preference. If any degree

of preferential matings between individuals exists and results in particular genotypes

mating more frequently than would be expected at random, it constitutes non-random

mating.

In the context of GA, random mating can be implemented in simple GAs where

individuals are selected for mating according to their fitnesses relative to the average

fitness of population, such as fitness-proportionate selection. In this case, individuals

are not allowed to actively determine their mating partners because mating preference

is not implemented.

On the other hand, non-random mating is closely related to speciation—formation
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of reproductively isolated groups of organisms. The result of reproductively isolation

is that individuals of a population are not able to mate with individuals of another

reproductive isolated population. In GA research, speciation mechanisms were con-

ceived of mainly based on two classes of speciation, namely, allopatric speciation

(Mayr, 1942) and sympatric speciation (Dobzhansky, 1937). Allopatric speciation

imposes direct or indirect mate restriction on mating through geographic barriers.

Canonical examples of direct restricting mating via geographic barriers are fine-

grained parallel GAs (PGAs), where each individual is allocated at each deme and

crossovers occur only between individuals that are near one another geographically.

This is a form of local mating.

As opposed to the local mating algorithms, coarse-grained PGAs indirectly restrict

mating in which the population is explicitly divided into smaller subpopulations. Each

subpopulation is isolated from the others in the sense that it evolves independently

with occasional migrations of individuals from one subpopulation to another. The

resulting mating can only take place within geographically separate groups, except

the migrating individuals. (A nice review regarding the existing PGA models can be

found in (Cantú-Paz, 1997).)

Sympatric speciation, on the other hand, restricts mating by explicit rules, rather

than by geographic barriers. For example, Eshelman and Schaffer (1991) implemented

a method to prevent incest: they disallowed sufficiently similar individuals (in terms

of the Hamming distance between their genotypes) to mate, aiming to keep the popu-

lation as diverse as possible. On the other hand, Deb and Goldberg (1989) restricted

mating between phenotypically similar individuals in order to facilitate speciation to

solve multimodal function optimization problems. Other mating mechanisms such as

tag-added mating schemes (Spears, 1994), template-added mating schemes (Booker,

1985) and sexual selection (Todd and Miller, 1991) have the capability to generate

speciation, as well. In addition, the Distributed Breeder Genetic Algorithms invented
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by Mühlenbein and Schlierkamp-Voosen (1993) were designed to study artificial se-

lection similar to that used by human breeders. In their models, mating is based on

rational selection performed by human breeders, rather than by natural selection.

The central theme of this thesis is to systematically investigate mate selection

based on similarity tests that belong to the category of sympatric speciation. In par-

ticular, by allowing individuals to actively select mates, fitnesses of candidate mating

partners are dynamically re-scaled by the individual who chooses them. This would

introduce another source of selection pressure, in addition to the selection pressure

arising from the environment. Therefore, we can expect that these two sources com-

plicate the actual probability of an individual being selected for reproduction.

Before delving fully into the thesis, the rest of this chapter discusses the goal of

this thesis and provides an outline for the remaining chapters.

1.3 Goal and Outline

I have briefly discussed in the preceding section that the process of information ex-

change among a GA’s population individuals involves two key components: crossover

and mate selection. This thesis concentrates on the investigation of effects of mate

selection in GAs. The prevalence of mate selection in biology is widely recognized,

yet a systematic investigation of this subject in GA research is still lacking. The goal

of this thesis is to propose a framework that facilitates exploration of mate selection

in GAs in order to (1) gain a deeper understanding of how GAs work, (2) how to

design more robust GAs, and (3) shed more light on why mate selection matters in

biology.

Chapter 2 discusses, in depth, my motivation for conducting research on mate se-

lection. Starting from an example in the context of GA, I indicate potential problems

that occur in a simple implementation of GA. Then some biological background of

mate selection is described. Afterwards, I present a literature review of prior work
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that is relevant to mating strategies, where I focus on the distinction between simi-

larity and dissimilarity-based mate selection schemes.

In Chapter 3, I propose a framework for investigating mate selection schemes in

the context of GA. The major point is that by allowing individuals to select mates,

fitnesses of candidate mates are dynamically re-scaled by the individual who chooses

them. This results in a system in which population members’ fitnesses depend on

other individuals, rather than being determined only by the environment. I demon-

strate that some biological phenomena, such as hitchhiking and the founder effect,

can be explained in GA’s context. These phenomena, in general, have significant as

well as negative effects on GA’s search power, and the results show that proper mat-

ing choices can reduce these effects. I then proceed to examine performance of GAs

with other mate selection schemes. The results obtained illustrate that mating pref-

erences indeed help discriminate population individuals and better utilize building

blocks already discovered for exploration of the search space, which in turn improve

the GA’s performance. In addition, I conduct experiments to investigate effects of

two important factors that affect GA’s search power: deception and population size.

In Chapter 4, I employ a Markov chain model to analyze GAs as a theoretical basis

for the mate selection schemes, where I introduce an explicit way of describing how

an individual’s fitness depends on others’ fitnesses. Although closed form analysis

is difficult in general, useful insights can be obtained by means of both visual and

computational exploration of the models. I characterize effects of various factors

interacting with mate selection schemes, such as mutation, crossover, and difficulty of

test functions. Then I show how different mate selection schemes enhance the GA’s

search power.

The study of Chapters 3 and 4 presents important properties of mate selection in

the context of GA. Since the testbeds used in these two chapters are relatively simple,

in Chapter 5, I continue the study based on more complicated test functions for larger
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population sizes and string lengths. The investigation first concentrates on several

original versions of the Royal Road functions (Mitchell, Forrest, and Holland, 1992),

which form a class of idealized building-block-based test functions for comparing

effects of different mate selection schemes. I then continue testing the mate selection

schemes using the hyperplane-defined functions (Holland, 2000), which extend the

complexity of fitness landscapes for further exploration of the GA’s behavior.

With the results obtained for the building-block-based testbeds, I introduce an

important hypothesis regarding general effects of the mating choices on the GA’s

search. Chapter 6 then presents an empirical validation based on more realistic, non-

building-block-based problems, and the results indeed validate my hypothesis. These

results are encouraging since it means that the ideas of mate selection proposed in

this thesis can be applied to practical problems.

In Chapter 7, I discuss a more general setting in the context of multimodal func-

tion optimization, engineering and machine learning. Identifying multiple peaks and

maintaining subpopulations of the search space are two central themes. An immune

system model is employed to study these two problems. The experimental results

then shed more light into how the mate selection schemes compare to traditional

selection schemes.

Finally, Chapter 8 provides a summary of this thesis, and highlights its contri-

butions to GA research. It discusses paths for future research, and draws overall

conclusions from the research presented in this thesis.
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CHAPTER 2

MOTIVATION

2.1 Introduction

A Simple GA (SGA) traditionally generates a random, initial population of can-

didate solutions (chromosomes). Selection for reproduction, crossover and mutation

operate on the population over a certain number of generations until a stop criterion

is reached. The probability of individuals being selected for reproduction is accord-

ing to their fitness values: better solutions have larger probability to be chosen to

cross with other solutions and generate offspring that share the genetic material from

both parents. Mutations may occur with very low probability. If there is no specific

restriction on how mating partners should be chosen, an individual mates with any

other regardless of its parenthood or likeness. This type of mating scheme is referred

to as random mating (Roughgarden, 1979; Russel, 1998).

Random mating is the simplest form of mating process used by GAs. The selection

scheme acts on the population to pick two parents for producing offspring, each parent

being passively assigned its mating partner. Such a simple implementation in fact

overlooks a potential advantage in the GA’s mating process—the design of robust GAs

is contingent not only upon how they exchange information (the task of crossover),

but also upon their selection of proper mates (the task of mate selection). It may be

quite beneficial to seek a mate by active search, rather than by happenstance; once

a good mate is found, the information exchange and combination may be facilitated
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to improve performance substantially. Let us consider the following example:

Given a problem to be solved, if a bit string representation for candidate solutions

is used, a simple GA works as follows (Mitchell, 1996):

1. Start with a randomly generated population of n l-bit chromosomes (candidate

solutions to a problem).

2. Calculate the fitness f(x) of each chromosome x in the population.

3. Repeat the following steps until n offspring have been created.

a. Select a pair of parent chromosomes from the current population, the proba-

bility of selection being an increasing function of fitness. Selection is done

“with replacement,” meaning that the same chromosome can be selected

more than once to become a parent.

b. With probability Pc (the “crossover probability” or “crossover rate”), cross

over the pair at a randomly chosen point (chosen with uniform probability)

to form two offspring. If no crossover takes place, form two offspring that

are exact copies of their respective parents.

c. Mutate the two offspring at each locus with probability Pm (the “mutation

probability” or “mutation rate”), and place the resulting chromosomes

in the new population. If n is odd, one new population member can be

discarded at random.

4. Replace the current population with the new population.

5. Go to step 2.

In this simple GA implementation, many selection schemes can be used to fulfill

the selection process. For example, if we adopt the fitness-proportionate selection
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scheme (Holland, 1975), a pair of parent chromosomes are selected from the popu-

lation, the probability of selection being an increasing function of fitness. Therefore

the first individual is passively assigned mating partners by fitness-proportionate se-

lection. The consequence is that each individual is forced to mate with some partners

that may not carry potential genetic material needed for further improvements. This

often impedes the power of information exchange through individuals of GAs. The

following example helps further elucidate this point:

Suppose the population is composed of bit-strings of length 8 and the relevant

building blocks are 1111**** and ****1111 (* can be either 1 or 0), and each of them

contributes fitness of 4 to the strings in the population. Then, for example, a string X,

11110000, is of fitness 4, and the optimal string is 11111111, whose fitness is 8. Now

given string X, and two candidate mating partners, Y1 (11110000) and Y2 (00001111),

under the mechanics of the simple GA above, Y1 and Y2 have the same probability

to be chosen for mating since these two strings are of the same fitness. However, if

we are concerned with finding the optimal string, clearly, string Y2 is better than Y1

because the mating between Y2 and X is likely to generate the optimum, yet it is

not the case if X mates with Y1. This implies that the fitness-proportionate selection

scheme is not able to distinguish individuals of the same fitness, yet of quite different

string structures.

The example above shows a possible deficiency of employing a simple selection

scheme that does not permit individuals to actively determine their mates. Such an

implementation of the selection process confers the only selection pressure in simple

GAs, where population members’ fitnesses are independent of others in the sense

that their fitnesses are determined by the environment only, rather than by other

individuals. However, allowing individuals themselves to actively choose mates in-

troduces another source of selection pressure. The fitnesses of candidate mates are

somewhat “re-defined” according to the degree of their satisfying mating preference
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of the first individual. As a result, the fitness values of population members can be

interdependent and coevolve with each other.

In the rest of this chapter, biological background of non-random mating will be

discussed, and I will present a literature review of prior GA research work on this

subject. Then starting from the next chapter, I will show the framework for inves-

tigating non-random mating schemes in the context of GA, and present the relevant

theoretical and empirical analyses.

2.2 Biological Background

One of the reasons population genetics is a successful theory is that it is built

upon a null model, the Hardy-Weinberg equilibrium principle (Freeman and Herron,

1998, p. 121). This null model predicts, under certain assumptions (i.e., population

experiencing no selection, no mutation, no migration, no genetic drift and random

mating), that across generations allele and genotype frequencies will not change. The

Population will not evolve. Violations of these simple assumptions of the null model

can result in change of allele frequencies. Population genetics thus identifies the

mechanism of population evolution.

The assumption of the Hardy-Weinberg Law that members of opposite sexes in

populations mate randomly ensures that the population equilibrium is not disturbed.

This case is referred to as panmixia in which each individual member of a population

has an equal chance of mating with every other individual of the opposite sex. The

probability of mating is not determined by genotype; each individual mates with-

out preference. However, any degree of preferential matings between individuals that

results in particular genotypes mating more frequently than would be expected at ran-

dom constitutes non-random mating. When non-random mating occurs, genotypes

will not occur in frequencies predicted by the Hardy-Weinberg equilibrium principle.

Sexual selection is typical of non-random mating, where members of one sex show
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a consistent preference for a particular phenotype of the opposite sex (Price, 1996;

Freeman and Herron, 1998). It normally results in strongly skewed mating systems,

because panmixis is lost and often a small number of individuals are responsible for

much of the reproduction in a population.

Another representative non-random mating mechanism is assortative mating (Price,

1996; Freeman and Herron, 1998). Assortative mating means mating within sub-

groups of a population characterized by genetic similarities between mates. For exam-

ple, organisms with similar genetically controlled heat requirements tend to become

sexually active at the same time and mate with each other more frequently than with

individuals with different heat requirements.

Assortative mating can be generally classified as four types: positive assortative

mating, negative assortative mating, inbreeding, and outbreeding. Positive assortative

mating indicates that individuals preferentially mate with their own phenotype so

as to decrease heterozygotic frequency (increases homozygotic frequency). This is

common in humans; for example, tall men and tall women tend to marry. Negative

assortative mating, on the contrary, means that individuals avoid their own phenotype

and the heterozygotic frequency is increased. For example, if tall persons select short

persons to marry this would represent negative assortative mating.

The third type is inbreeding or, more commonly, incest (Roughgarden, 1979; Rus-

sel, 1998): close relatives have an increased probability of mating with each other,

and unrelated individuals have a decreased probability of mating. Outbreeding refers

to less mating between relatives than occurs in random mating. Inbreeding increases

the proportion of homozygous individuals in a population at the expense of het-

erozygotes, thereby resulting in decrease of the genetic diversity in the population.

Outbreeding, on the contrary, increases that same diversity (Roughgarden, 1979). In

case of inbreeding, genetic disorders are often recessive and, oftentimes, increase in

frequency with increase in homozygous recessives. Inbreeding depression is the reduc-
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tion in mean fitness of a population from inbreeding resulting in homozygotes with

deleterious or lethal recessive alleles. This is a significant problem in zoos and captive

breeding programs, as well as for endangered species such as the California condor.

Biological background of non-random mating provides significant insights for deeper

understanding of the role of sex in evolution. In prior GA research, several models

have been proposed that implement the idea of non-random mating. I will present a

literature review of representative work on non-random mating in the context of GA

in the next section.

2.3 Non-Random Mating in Prior GA Research

In prior GA research, non-random mating (restricted mating) schemes have been

proposed for achieving different goals. For example, the objectives may be to directly

promote population diversity, to prevent the formation of lethal solutions, or to induce

speciation.

Diversity, as implemented in the context of GA, plays at least two key roles: (1) the

formation and maintenance of diverse building blocks on the way to a single, satisfying

solution, and (2) the formation and maintenance of diverse multiple solutions. The

two roles are not entirely independent. In searching the path to a single solution,

the GA may encounter multiple solutions. Similarly, maintaining multiple solutions

may be applicable, in some form, to exploitation of beneficial population diversity to

construct a single desired solution.

Promoting population diversity for improving GA’s performance of locating a sin-

gle desired solution (e.g., the global optimum or the best-so-far individual in the

population) is a common practice. Booker (1987) proposed crossover among reduced

surrogates—nonmatching alleles of the strings being crossed. If the population indi-

viduals differ in more than one bit, crossover is guaranteed to produce offspring dif-

ferent from their parents. The idea is to restrict mating between individuals that are
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too similar and to prevent fixation within classes rather than between classes. In (Es-

helman and Schaffer, 1991) incest prevention is another non-random mating scheme,

where mating is allowed only between dissimilar individuals; i.e., if strings’ Ham-

ming distances exceed a certain threshold, they are permitted to mate. (Craighurst

and Martin, 1995) also proposed a method for incest prevention in which recombina-

tion between individuals with a certain degree of shared parenthood is not permitted.

The authors defined an incest prevention degree, which designates how far back in the

family tree the GA must look in order to prevent recombination between two related

individuals. Fernandes, Tavares, Munteanu, and Rosa (2001) proposed the negative

assortative mating GA that chooses one parent (the first parent) and a set A of in-

dividuals by regular selection schemes (e.g., fitness proportionate selection). Then

the second parent will be the one, belonging to set A, that has the maximum Ham-

ming distance to the first parent. If several second parents are of the same Hamming

distance, the one with higher fitness is selected. The GAs with these “dissimilarity-

based” mate selection schemes all demonstrated improved performance when the goal

is to locate a single desired solution.

Lethal solutions are the low-fitness offspring that may be generated from crosses

between multiple conflicting solutions. For example, consider a function with two

equal peaks: f(x) = (x − (1
2
))2, where 0 and 1 are the two optima. In many encod-

ings, 00. . .0 and 11. . .1 may represent these two optima. The crossing from solutions

at these two optima is rather likely to create useless hybrids that degrade certain

online performance of GA. Resolving this problem usually involves a certain degree

of restriction on mating, because the formation of lethal solutions can be avoided.

Deb and Goldberg (1989) restricted mating by allowing an individual to search for

a mate within a distance of σmating. If such an individual can be found, mating is

performed. Otherwise, a random individual is chosen. They showed that restricting

mating to similar individuals produces more consistent results across multiple runs,
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and improves average population fitness.

The third objective related to non-random mating is speciation. A species, accord-

ing to the biological definition, is a class of organisms that are capable of interbreeding

among themselves, but that typically do not breed with individuals outside their class

(Cook, 1991). This notion of reproductive isolation has led some GA researchers to

attempt to induce speciation by preventing mating among dissimilar individuals.

Booker (1982, 1985) restricted crossovers to occur between functionally similar

individuals. The individuals were rules in a Holland-style classifier system, in which

the notion of “functionally similar” has a natural interpretation as the set of classifiers

that simultaneously match the message list. Only classifiers that match (or partially

match) the same message are allowed to cross. It was shown that this approach

works well for forming sub-populations in the context of classifier systems, but was

not examined in the more general GA context. In addition, his additional use of

a sharing scheme in selection raises the possibility that the combination of sharing

and mating restriction, or sharing alone, rather than mating restriction alone, is

responsible for the success.

Booker (1982) and Goldberg (1989) explored various approaches in which a mating

tag is attached to each individual. This tag must match another individual in some

number of loci before a cross is permitted. Many variations exist, including one-way

matching, two-way matching, and partial matching. More advanced methods add a

template to each individual, and matches must occur between tags and templates

instead of between tags and individuals. Tags and templates evolve, along with the

rest of a string. Deb applied evolving species tags and templates to restrict mating in

multimodal function optimization (Deb and Goldberg, 1989). Two individuals cross

if their tags and templates match both ways; if the matching is only one way, they

cross with probability 0.5.

Spears (1994) employed a k-bit tag attached to each population individual, which
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effectively divides the population into 2k subpopulations. He then disallowed mating

between individuals with different tags. Tags are never modified by mutation and

crossover, yet selection is allowed to operate across subpopulations. The results he

obtained showed that on two sinusoidal test functions, each having five peaks of equal

height, the algorithm maintains a few of the peaks. However, if peaks are of different

heights, all subpopulations eventually converge to the highest peak.

Todd and Miller (1991) used mating-preference tag to induce sexual selection of

individuals and demonstrated that sympatric speciation can be formed in their GA’s

framework. The tag decodes to a real number on a given interval that indicates an

individual’s preferred mating distance. The partial probability that a given individual

mates with another individual is determined by a triangular function. If two individ-

uals’ partial probabilities are calculated, the probability that they actually mate is

the product of their individual, partial probabilities.

With a specific selection-for-reproduction scheme, Todd and Miller showed that,

on a flat fitness function, over the course of the run, the resulting population is dy-

namically divided into several clusters of phenotypically similar individuals: some

subpopulations merge and some split into sub-clusters. However, on non-flat fitness

functions, selection pressure and noise become dominant, and the GA does not gen-

erally achieve speciation.

Mahfoud (1995) proposed a scheme that restricts mating to take place only within

a species; if two individuals are from different species, the crossing is not permitted,

and the individuals proceed to the mutation stage. His implementation used a pheno-

typic distance threshold of 0.1 to decide whether two individuals belong to the same

species. It turned out that runs on a sinusoidal testbed that has five peaks, spaced

at intervals of 0.2, without mating restriction, the GA fully converges by generation

40 to a single global optimum from the five possibilities. (All 100 individuals become

identical.) With mating restriction, due to the reduced number of crosses, the GA
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fully converges by generation 30 to a single global optimum. Mating restriction, in

this case, accelerates convergence to a single peak, rather than distributing popu-

lation on several peaks—speciation does not occur through this intraspecies mating

restriction.

In conclusion, the prior existing work reveals that dissimilarity-based mating re-

striction seemingly facilitates the search for a single, satisfactory solution. Crosses

between species appear to be desirable for potential jumps to higher peaks in the

search space. However, to avoid producing lethal offspring, it would require that

matings occur only between individuals of similar characteristics.

Speciation is a much more complicated issue. If selection pressure dominates

the evolution process, similarity-based mating restriction alone generally does not

guarantee effective speciation. The result Mahfoud obtained based on phenotypic

similarity is a clear example. Several aforementioned similarity-based mating restric-

tions, including Spears’ tag-based restriction and Todd and Miller’s sexual selection

(on non-flat fitness functions), are not successful in formation of species, either. To

facilitate speciation would require additional strategies to control selection pressure.

For instance, Deb and Goldberg (1989) employed the fitness sharing scheme to reg-

ulate fitnesses of population members based on the information available for niches

in question. The results showed that their approach indeed promotes speciation and

prevents convergence on a single peak. When similarity-based mating restriction was

applied, the resulting speciation becomes more consistent and stable.

We may put together the observations above and propose two claims as follows:

• Dissimilarity-based mating selection accelerates exploration of the search space.

• Similarity-based mating selection enhances the capability of speciation mecha-

nism for formation and maintenance of subpopulations.

It indicates, aiming at rapid formation and stable maintenance of a single solu-
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tion or multiple solutions, that there exists a delicate balance between mating like

and unlike individuals. Both interspecies and intraspecies crosses may be beneficial,

depending on the problems at hand, the algorithms used, and the objectives.

Given all the results obtained so far in the context of GA, a systematic investiga-

tion on similarity and dissimilarity-based mate selection is still lacking. In this thesis,

I intend to propose a framework that allows us to conduct comprehensive analyses

to validate (or invalidate) the claims above and deepen the understanding for GA’s

behavior. The following chapters present such analyses.
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CHAPTER 3

METHODOLOGIES AND GENERAL ANALYSIS

3.1 Introduction

Traditional GA models focus on problems in which each population member’s

fitness is independent of other population members—their fitnesses are evaluated by

an exogenously imposed objective function. In nature organisms may interact and

coevolve with other organisms in an environment. The fitnesses of organisms are thus

evaluated not only by the environment but also by the individuals with whom they

interact.

Several authors have studied GA models in which the fitness evaluation of indi-

viduals depends on other individuals in the same population or in other populations.

Some of the results reported show that such models yield better performance than

traditional optimization models (Hillis, 1992; Rosin and Belew, 1997; Vafaie and De

Jong, 1996; Potter et al., 1995).

In this thesis, I introduce simple models that implement mate selection in the con-

text of GA, based on the idea of assortative mating in biology. Allowing individuals to

actively search for mates is an approach to model interdependent fitnesses of popula-

tion members. For instance, an individual may first choose a set of candidate mating

partners. Then the probability of these candidates being selected as the actual mate

may depend on the degree of their satisfying the first individual’s mating preference.

This method can be regarded as re-defining the fitnesses of these candidates based on
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the degree of satisfying mating preference, and the probability of being selected is an

increasing function of the newly defined fitnesses. As a result, through endogenous

interactions in the population, the realized fitness of an individual depends on both

the environment and how many others would consider it a good mate.

In the following parts of this chapter, I first use the traditional fitness propor-

tionate selection scheme to introduce two special cases of mating choices to facilitate

a theoretical analysis based on the Schema theorem. Although they represent two

opposite extremes, it turns out that such an analysis can be applied to the investi-

gation for some well known phenomena in biology and in the context of GA, such

as hitchhiking and the founder effect. These two phenomena have been identified as

important factors that impede the GA’s search power. The experimental results will

show that the dissimilar mating choice effectively suppresses these two phenomena.

Afterwards, I extend the range of mate selection to include two intermediate cases

that combine similarity test and fitness-proportionate selection to help discriminate

candidate mates. Therein it will be more clearly seen that the individuals’ proba-

bilities of being selected for mating are complicated by the environments and mate

preferences. I then study the GA’s performance in terms of “rate of improvement”

and “creation of lethal hybrids.” The results show that the dissimilar mating scheme

furthers the GA’s exploration of the search space and yields a better best-so-far per-

formance, yet at the expense of generating more lethal hybrids that degrade the

population’s fitness.

Then I present some results based on a microscopic diversity measure to consoli-

date our understanding gained from the investigation of hitchhiking and the founder

effect, where it is shown that the dissimilar mating preferences retain more genetic

variation in the population.

Thereafter, I adopt tournament selection as the background selection scheme since

the experiments I conducted show that the tournament-based selection schemes tend
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to outperform the proportion-based selection schemes. I will present the relevant

experimental results which show the superior performance of the dissimilar mating

schemes in terms of improving the best-so-far solutions.

In the final part of this chapter, I investigate the effects of population size on

the GA’s search power. The results show that for limited population sizes, the

dissimilarity-based mate selection schemes can improve the GA’s best-so-far perfor-

mance; however, this performance advantage will be suppressed when population size

is large enough. Thus, we learn that in many practical problems where population

size is limited the dissimilarity-based mate selection schemes are better strategies for

the GA to improve the best-so-far performance.

3.2 Mate Selection Schemes

Many approaches to implement the mechanism of mate selection are possible. For

example, the first individual may choose a set of members in the population, and then

select the one who most matches its preference. If we adopt the Hamming distance as

the similarity metric, then, in case of similar mating, the first individual may select

as the actual mate the one whose Hamming distance to him is the smallest. In case

of dissimilar mating, the one whose Hamming distance is the largest will be selected.

Such mate selection schemes are deterministic in the sense that the individual who is

finally being selected is the most similar (or dissimilar) to the first individual. It is

quite natural to implement a probabilistic mate selection strategy. For example, the

probability of candidates being selected as the actual mate may be proportional to

the magnitude of their Hamming distances.

In this thesis, I replace “positive assortative mating” used in biology with “similar

mating.” Likewise, “negative assortative mating” is replaced with “dissimilar mat-

ing.” Then several mate selection schemes are proposed to facilitate the investigation

on the effects of mate choices.
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I first examine two extreme cases: in case of similar mating, the population mem-

ber that is the most similar to the first individual is chosen as the mate; in case of

dissimilar mating, the most dissimilar individual is chosen.

The similarity measure between two individuals (bit strings) used here is Hamming

distance—the number of locations at which corresponding bits differ.∗ This mate

selection scheme works as follows:

During each mating event, a fitness-proportionate selection is run to pick out the

first individual. Then the Hamming distances of all population members to the first

individual are calculated. The actual mate of the first individual is chosen according

to the following two different schemes:

Maximum Similar Mating (MSM): The population member whose Hamming

distance is the smallest is selected for mating.

Maximum Dissimilar Mating (MDM): The population member whose Hamming

distance is the largest is selected for mating.

Notice that in the mate selection schemesabove if several members are of the

same maximum (or minimum) Hamming distance to the first individual, then one of

them is randomly selected. The computational cost involved in a generation is O(N2)

similarity comparisons, where N is the population size.

These two extreme cases simplify the analysis of mate selection based on the

Schema Theorem (Holland, 1975). This is the subject of the next section, where I

perform a simple theoretical analysis and present empirical results to enhance the

investigation.

∗There are several ways to define the similarity between individuals (see the literature review
presented in Section 2.3). In this thesis, I focus on the Hamming distance, which is sufficient for the
study of the mate selection schemes proposed here.
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3.3 Schema Theorem Analysis

3.3.1 Review of The Schema Theorem

A common assumption in the traditional GA theory is that, at a very general

level of description, GAs work by discovering, emphasizing, and recombining good

“building blocks” of solutions in a parallel fashion. The idea behind this assumption

is that good solutions tend to be composed of promising building blocks.

The notion of building blocks was formalized by Holland (1975) through so-called

schemata—A schema is a set of bit strings that can be described by a template

composed of ones, zeros, and asterisks, the asterisks representing wild cards. For

example, the schema H = 0 ∗ ∗ ∗ 1 is the representation of a set of all 5-bit strings

which begin with 0 and end with 1.

The investigation on the increase and decrease of the number of schema instances

over generations makes clear how GAs process sub-solutions to improve the search

quality. Holland’s schema theorem, which describes such a dynamic behavior, can be

derived as follows:

Let m(H, t) be the number of instances of schema H present in the population

at generation t. We calculate the expected number of instances of H at the next

generation, or E(m(H, t+1)), in terms of m(H, t). By fitness-proportionate selection,

the simple GA (as described in Chapter 2) assigns a string a probability of selection

directly proportional to fitness. Thus the expected number of offspring of a string x

is equal to f(x)/f(t), where f(x) is the fitness of x and f(t) is the average population

fitness at time t. It follows that H can expect to be selected m(H, t) · (f(H, t)/f(t))

times, where f(H, t) is the average fitness of those strings in the population that

are instances of H at time t. The probability that single-point crossover destroys a

schema is precisely the probability that the crossover point falls within the schema’s
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defining positions. The probability that H survives crossover is:

Sc(H) ≥ 1− pc(
d(H)

l − 1
),

where pc is the crossover probability, d(H) is the defining length of H (i.e., the distance

between its outermost defined bits) and l is the length of bit strings. Since a disrupted

schema may regain its composition if two similar strings cross with each other, this

survival probability is an inequality.

The probability that H survives mutation is (1−pm)o(H), where pm is the mutation

probability and o(H) is the order of H (i.e., the number of defined bits in H). The

product of the expected number of selections and the survival probabilities yields the

schema theorem:

E(m(H, t + 1)) ≥ m(H, t) · (f(H, t)/f(t)) · [1− pc(
d(H)

l − 1
)] · [(1− pm)o(H)]. (3.1)

The schema theorem describes the growth of a schema over generations. It is often

interpreted as implying that short, low-order, above-average (in fitness) schemata

grow exponentially over time, while below-average schemata decay at a similar rate.

Therefore, the simple GA, prior to significant convergence, allocates an exponentially

increasing number of trials to promising schemata or building blocks.

Notice that the schema theorem is often predictive of schema growth and describes

the disruptive aspects of crossover and mutation; it is not used to account for how new

schemata are discovered. New schemata can be constructed by crossover and mutation

to facilitate the exploration of the search space. In general, as a GA progresses,

population members are more and more alike, so that schemata which are disrupted

by crossover tend to be regained immediately. On the other hand, as long as the

population undergoes significant convergence, the power of crossover for recombining

building blocks is hindered because of the loss of population diversity.

In the next section, I use the schema theorem to investigate how the mate selection

schemes influence schema dynamics.
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3.3.2 Interpretation of the Effects of Mate Selection By The
Schema Theorem

In Section 3.2, two mate selection schemes are proposed: the maximum similar

mating, and the maximum dissimilar mating. In the simple GA proposed in Chapter

2, selection is done with replacement, meaning that the same individual can be selected

more than once to become a mate. This includes the likelihood of mating with

the exact same copy of oneself. Since in case of the maximum similar mating an

individual chooses the population member who is the most similar to himself, this

would guarantee that the first individual always chooses the identical copy of himself

for mating.

Thus the probability that schema H survives crossover is:

Sc(H) = 1,

since a disrupted schema regains its composition immediately after crossover.

Let EMSM(m(H, t)) denote the expected number of instances of H at the tth gen-

eration based on the maximum similar mating. Then the schema theorem becomes:

EMSM(m(H, t + 1)) = m(H, t) · (f(H, t)/f(t)) · [(1− pm)o(H)]. (3.2)

On the other hand, in case of the maximum dissimilar mating an individual chooses

the population member whose Hamming distance is the largest. This would give the

crossover-surviving probability of schema H a larger likelihood to approach the lower

bound 1− pc(
d(H)
l−1

). Let EMDM(m(H, t)) represent the expected number of instances

of H at the tth generation based on the maximum dissimilar mating. Then the schema

theorem becomes:

EMDM(m(H, t + 1)) ≥ m(H, t) · (f(H, t)/f(t)) · [1− pc(
d(H)

l − 1
)] · [(1− pm)o(H)]. (3.3)

The ratio of the expected growth rate of schema H for these two mate selection

schemes is given by
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1 ≤ EMSM(m(H, t + 1))

EMDM(m(H, t + 1))
≤ 1

1− pc
d(H)
l−1

. (3.4)

Equation 3.4 shows that the expected schema-growth rate for the maximum similar

mating is greater than that for the maximum dissimilar mating.

The rest of this chapter presents empirical results to further compare the similar

and dissimilar mating schemes in the context of simple GAs.

3.4 Empirical Analysis

The two cases proposed so far facilitate the theoretical analysis. Although they

represent two opposite extremes, it turns out that such an analysis can be applied to

the investigation for some well known phenomena in the context of GA—hitchhiking

and the founder effect, which have been identified as important factors that affect the

GA’s search power. This is the subject of the next two subsections.

Then I will introduce two intermediate cases of mate selection to more clearly show

that how the individuals’ probabilities of being selected for mating are complicated by

the environments and mating choices. Based on these schemes, I will study the GA’s

performance in terms of best-so-far performance, which is a traditional performance

metric employed in many practical applications. Thereafter I present some results

based on a microscopic diversity measure to consolidate our understanding gained

from the investigation of diversity in hitchhiking and the founder effect.

Then I adopt tournament selection as the background selection scheme since the

experiments I conducted show that the tournament-based selection scheme tends

to outperform the proportion-based selection scheme. I will present the relevant

experimental results to show that the dissimilar mating schemes can improve the

GA’s best-so-far performance.

In the final part of this chapter, I investigate the effects of population size on the

GA’s search power, where we can see how the difference between the mate selection
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schemes’ power is suppressed when the population sizes are large enough.

In short, the most important lesson we will learn is that dissimilarity-based mate

selection is more beneficial in improving the GA’s search power.

3.4.1 Hitchhiking

In population genetics “hitchhiking” is a well-known phenomenon that occurs

when some newly discovered allele (or sets of alleles) offers great fitness advan-

tages. As that allele spreads quickly through the population, the closely linked alleles

(though they may make no contribution to the fitness) could propagate to the next

generation by hitchhiking on that allele. The rapid occupancy of those non-relevant

alleles thus greatly reduces exploration of alternatives at those loci. They either

drown out other already-discovered alleles that are advantageous, or leave no room

for not-yet-discovered beneficial alleles.

In GA research, hitchhiking has been identified as a major problem that limits

implicit parallelism by reducing the sampling frequency of various building blocks

(Das, and Whitley, 1991; Mitchell, Forrest, and Holland, 1992). Forrest et al. (1993)

found that if some intermediate stepping stones are much fitter than the primitive

components, hitchhiking generates more severe problems that greatly hamper the

discovery of some necessary schemata.

To see the hitchhiking phenomenon in the context of GA, let us consider an

example function—a small “Royal Road (RR)” function (Forrest and Mitchell, 1993),

in which four consecutive building blocks of five ones each are defined. Table 3.1 is

the schematic of this function.

This function involves a set of schemata S = {s1, . . . , s4} and the fitness of a bit

string x is defined as

F (x) =
∑
s∈S

csσs(x),

where each cs is a value assigned to the schema s as defined in the table; σs(x) is
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Table 3.1: Small royal road function S1.

s1 = 11111***************; c1 = 10
s2 = *****11111**********; c2 = 10
s3 = **********11111*****; c3 = 10
s4 = ***************11111; c4 = 10

defined as 1 if x is an instance of s and 0 otherwise. In this function, the fitness of

the global optimum string (20 1’s) is 10 × 4 = 40.

I select this small Royal Road function as a testbed because it belongs to a class

of building-block-based functions, in which improvements in the RR domain depend

entirely on the discovery and exploitation of building blocks. This would serve as an

idealized testbed for us to observe (1) how mate selection facilitates distinguishing

individuals that carry necessary building blocks for further improvements (see the

example illustrated in Chapter 2), and then (2) how crossover brings these building

blocks residing on separate strings into combination on a single string. (The second

goal above has been extensively investigated by Mitchell, et al. (1992) and Forrest et

al. (1993). This thesis focuses on the study of the first goal.)

We can observe hitchhiking directly by plotting the densities (percentage of the

population that are instances) of the relevant schemata over time for the GAs with

the maximum similar mating and the maximum dissimilar mating. The experiments

performed are based on one-point crossover rate 1, and population size 20 over 200

generations.†

To give hitchhiking its easiest test, I first turn off mutation operator, since muta-

tion may destroy hitchhiker(s). Figure 3.1 is a typical run that shows such density

dynamics for the GA based on the maximum similar mating. Schema s3 is found at

†The experimental results obtained show that, for this small problem, the small population size
(20) serves well for distinguishing the effects of different mating preferences. Therefore, I will use
this population size throughout most of this chapter, except that effects of population size will be
investigated in the final subsection of this chapter. In Chapter 5, I will present more experimental
results for test problems of larger string lengths and population sizes.
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the first generation and quickly spread though the population. In the mean time,

schema s4 was rapidly suppressed by the hitchhikers adjacent to s3. A closer ex-

amination shows that these hitchhikers are 00101. Since mutation is turned off and

mating partners are simply the copies of individuals that select them, the population

is quickly filled with the clones of the individuals that carry s3 and its hitchhikers,

and finally converges to a single genotype.

In Figure 3.2, the GA was run with mutation being turned on at probability 0.005

and the same random seed. The results show that once s3 is discovered, its density

in the population rapidly rises, and the density of s4 simultaneously drops to zero in

the first several generations. However, with this nonzero mutation rate, s4 regains

its appearance around generation 130, being drowned out again, and then shows up

before generation 140.

In addition, we see that a distinct blip in the density of s2 around generation 50,

showing that the decrease of the density of s3 allows s2 to appear in the population.

But while s3 rises quickly again, s2 dies out. It is rediscovered around generation

75, and drowned out again. Until around generation 180, there is the third blip that

shows up, still exhibiting the similar situation as the first two blips.

The results of the GAs with mutation being turned on and turned off clearly show

that when matings only occur between exact identical individuals, mutation is the

only way to get away from hitchhiking.

Now I examine the GA runs based on the maximum dissimilar mating. Fig-

ure 3.3 shows the density plots for a typical GA run with zero mutation rates. The

appearances and disappearances of blips are more dramatic than Figure 3.1. Un-

like Figure 3.1, s3 has no apparent edge over s2 and s4: the densities of the three

schemata never exceed 0.6, leaving enough space for adjacent schemata to reproduce

in the population and keep alive for a longer while.
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Figure 3.1: Schema dynamics for observing hitchhiking (Maximum Similar Mating).
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Figure 3.2: Schema dynamics for observing hitchhiking (Maximum Similar Mating).
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In addition, the results for the maximum dissimilar mating GAs with mutation

rate 0 and 0.005 (Figure 3.4) do not exhibit the clear difference which occurred be-

tween the maximum similar mating GAs with mutation off and on.‡

The difference between the experimental results obtained for the maximum similar

mating and the maximum dissimilar mating is a consequence of different schema

growth rates. I show that, in Section 3.2, the schema growth rate for the maximum

similar mating is greater than that for the maximum dissimilar mating. As a result,

once a schema is discovered, the maximum similar mating guarantees that, with a

larger likelihood, instances of that schema take over the entire population in a shorter

time than the maximum dissimilar mating. This often entails non-relevant hitchhiking

alleles that impede further exploration of alternatives at the hitchhiking loci. Then

the density of one or more of the disjoint schemata is seen to reduce significantly.

The greater convergence rate resulting from the similar mating scheme therefore can

negate progress that the population has made towards good schemata that overlap

the hitchhiking bits.

The most likely positions for hitchhikers are those close to the defined positions of

good schemata, since they are less likely to be separated from those defined positions

under crossover (Forrest and Mitchell, 1993). This implies that the defining bits of

those schemata in the highly fit strings, along with the nearby bits, quickly come

to occupy most of the population. In other words, the nearby bits “hitchhiking” to

prominent schemata partially or totally suppress the appearance of disjoint building

blocks, leaving few variants at those loci. This leads to the loss of diversity in the

vicinity of the better schemata. As a consequence, some of the necessary building

‡As I shall show in some of the rest of this chapter, the maximum dissimilar mating scheme,
along with crossover turned on, is rather disruptive; thus, although all the schemata have chance
to appear, as shown in Figure 3.4, their frequencies cannot approach one. For moderate mating
preferences, such as the tournament-based mating preferences used in the later part of this chapter,
these four schemata have chance to simultaneously approach to one when the searching process goes
on.
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Figure 3.3: Schema dynamics for observing hitchhiking (Maximum Dissimilar Mat-
ing).
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Figure 3.4: Schema dynamics for observing hitchhiking (Maximum Dissimilar Mat-
ing).
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Table 3.2: Incompatible small royal road function IS1.

s1 = 11111***************; c1 =10
s2 = 00000***************; c2 = 5
s3 = *****11111**********; c3 =10
s4 = *****00000**********; c4 = 5
s5 = **********11111*****; c5 =10
s6 = **********00000*****; c6 = 5
s7 = ***************11111; c7 =10
s8 = ***************00000; c8 = 5

blocks for crossover to combine to gain performance advancements are lost or unlikely

to be discovered, and the GA’s search power is greatly hampered.

3.4.2 Founder Effect

In GA research, a much more important constraint on exploration than hitchhiking

is the founder effect (Holland, 2000). In presence of incompatible schemata, the first

discovered of the incompatible schemata comes to establish a large portion of the

population, and constrain the future evolutionary avenue. Consequently, the founder

schema effectively precludes the testing of the other incompatible schema. Further

improvements stem from the founder, making it progressively less likely that the other

schema will influence the search process.

The fitness landscape of the simple royal road function used in the last section

consists of four consecutive building blocks. The combination of these building blocks

constructs the only path for the GA to improve the search. Let us consider a variant

of the simple royal road function that consists of incompatible schemata as shown in

Table 3.2.

This function involves mutually exclusive alleles at each schema, and there are

16 (24) alternatives for search to improve solution quality. The fitness of the global

optimum (20 1’s) is 40, and that of the other local optimum (20 0’s) is 20.
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The incompatibility of schemata on this function is designed for testing the founder

effect—I would expect each 5-bit block to be soon occupied by a founder schema,

unless the founder schema is destroyed by crossover or mutation.

I examine the founder effect directly by plotting the density of each schema over

generations for the GAs with the maximum similar mating and the maximum dis-

similar mating. The experiments performed are based on one-point crossover rate 1,

and population size 20 over 200 generations.

Analogous to the analysis for the hitchhiking problem, I first turn off mutation in

order to give the founder effect its clearest examination, since mutation may destroy

founder schemata. Figure 3.5 is a typical run that shows the schema density dynamics

for the maximum similar mating GA. Schemata s1 and s4 are discovered at the first

generation and quickly spread though the population. A closer examination shows

that each of s1 and s4 has an instance at the first generation. Then because maximally

similar individuals are always chosen for mating, which in turns enhances the degree

of premature convergence, the instances of s1 and s4 quickly take over the whole

population. Due to the incompatibility, s2 and s3 are prohibited from being tested.

In the mean time, along with the growth of schema s4 hitchhikers 10110 rapidly

propagate to the whole population and block the testing of schema s5 or s6 (adjacent

to s4 on the right).

These results demonstrate that for this typical run s1 and s4 are the first dis-

covered of the two incompatible schemata which rapidly found their dynasties. As

a consequence, further improvements are constrained by s1 and s4, and the GA can

only devote itself to 4 possible alternatives for further improvements. (For other runs

different schemata may take over the whole population. That is, due to sampling

errors, either of the incompatible schemata is likely to dominate the population.)
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Figure 3.5: Schema dynamics for observing the founder effect (Maximum Similar
Mating).
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Figure 3.6: Schema dynamics for observing the founder effect (Maximum Similar
Mating).
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In Figure 3.6, I use the same random seed to run the GA with mutation being

turned on at rate 0.005. It exhibits quite different results than the GA with zero

mutation rate. s1 and s4 now leave some space for the incompatible schemata to show

up in the population, yet within two hundred generations, s2 and s3 does not appear at

all. On the contrary, s5 does move away from hitchhiking and regain its appearance

after generation 100. Since the hitchhikers on the right of s4 are 10110, only two

mutations are needed to discover s5, but this is not the case for the founder effect.

To get away from the founder effect, it would require five simultaneous mutations

together to recover an incompatible schema. Hence the difficulty imposed by the

founder effect is more severe than hitchhiking in this case. In addition, hitchhiking

is still another problem that affects the search for s2 and s3. Along with the founder

effect, these two schemata are thus more difficult to be discovered than s5 (or s6).

For the maximum dissimilar mating, the density plots for a typical GA run with

mutation being turned off is shown in Figure 3.7. Unlike Figure 3.5, no schema

effectively founds a dynasty; as can be seen, the maximum density of each schema is

around 0.5, making it less likely that either of incompatible schemata precludes the

testing of other incompatible schema (note that, due to sampling error, s1, s4, and

s5 still do not show up in the population). This situation is made more obvious in

the results shown in Figure 3.8, which are obtained for the GA run with mutation

rate 0.005 under the same random seed. It is now clear that no schema has an

apparent edge over its counterpart; each schema gains considerable proportion in the

population.§

The distinction between the two selection schemes comes from the fact that the

maximum similar mating ensures that individuals always mate with their identical

copies. In other words, they prevent themselves from mating with other individu-

als and thus preclude greater allelic diversity carried by other individuals. On the

§Again, as mentioned in the previous subsection, the maximum dissimilar mating scheme, along
with crossover, is rather disruptive; thus, although either of the incompatible schemata has chance
to appear, its frequency cannot approach one. For moderate mating preferences, such as the
tournament-based mating preferences used in the later part of this chapter, the schemata can ap-
proach to one when the searching process goes on.
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Figure 3.7: Schema dynamics for observing the founder effect (Maximum Dissimilar
Mating).
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Figure 3.8: Schema dynamics for observing the founder effect (Maximum Dissimilar
Mating).
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contrary, the maximum dissimilar mating allows individuals to exchange genetic ma-

terial with dissimilar mates, thereby recruiting more distinct alleles to escape from

the founder effect and hitchhiking.

3.4.3 Rate of Improvement and Creation of Lethal Hybrids

How rapid is evolutionary change, and what determines the rates, patterns, and

causes of change, or lack thereof? Answers to these questions can tell us much

about the evolutionary process. The study of evolutionary rate in the GA context

usually involves defining a performance measure that embodies the idea of rate of

improvement, so that its change over time can be monitored for investigation.

In many practical problems, a traditional performance metric is the “best-so-far”

curve that plots the fitness of the best individual that has been seen thus far by

generation n. On the other hand, with an idea borrowed from control systems—

rise time, which can be defined as the time required to reach some predetermined

threshold, we can compare how long different GAs would have to run on average

before a given metric first encounters the threshold. For example, in the simple royal

road function S1, the threshold can be defined as fitness value 30 (3/4 of the maximum

fitness) if the we are concerned with the best-so-far. We may also choose a threshold

value at 10 if the mean population fitness is the chosen performance metric.¶

Since the two mate selection schemes discussed so far are two extreme cases where

only the maximally similar or dissimilar population member is chosen as the mate,

I introduce another two intermediate mate selection schemes before studying the

rate of improvement. That is, during each mating event, the first individual is still

¶There are other performance measures available, of course. For example, one may be interested
in the relative time taken by an algorithm to perform computations other than fitness evaluations.
See the performance indexes used in the Second International Contest on Evolutionary Optimization
held in the IEEE-ICEC 97 conference (ICEO, 1997), where the two performance indexes used, the
best value reached (BV) and the Expected Number of Evaluations per Success (ENES), correspond
to the best-so-far and the rise time performance measures I used, respectively. Which metric should
be used depends on the problem domain, the algorithm used and the computation resources. See
Section 6.1 for a more detailed discussion on this subject.
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picked by fitness-proportionate selection, and the Hamming distances of all population

members to this individual are calculated. Then the mate for the first individual is

chosen according to the following two schemes:

Proportional Similar Mating (PSM): The probabilities of population members

being selected are reversely proportional to their Hamming distances.

Proportional Dissimilar Mating (PDM): The probabilities of population mem-

bers being selected are proportional to their Hamming distances.

Notice that since individuals’ Hamming distances may be zero, to avoid dividing

by zero in the proportional similar mating I offset all the Hamming distances by 1 in

this thesis. (Other offset values are possible, of course.)

The experiments performed here are still based on one-point crossover rate 1, mu-

tation rate 0.005, and population size 20 over 50 runs. Figure 3.9 shows the averaged

best-so-far curves on the test function S1 for the four mate selection strategies.‖

The threshold I choose for both test functions (S1 and IS1) is 25. We see the max-

imum dissimilar mating results in better improvement than the other three, because

its rise time to the threshold (around 130 generations) is the least. On the contrary,

the maximum similar mating yields the worst result. The two intermediate cases ex-

hibit the trend that the dissimilar mating is advantageous for further improvements

of the best-so-far performance.

The similar result can be observed in Figure 3.10 where the averaged best-so-far

curves (over 50 runs) for the test function IS1 is shown.

With the observation that the dissimilar mating outperforms the similar mating

in the best-so-far curves, it seems reasonable to ask if the whole population converges

‖The vertical bars overlaying the metric curves throughout this thesis represent the 95-percent
confidence intervals calculated from Student’s t-statistic (Miller, 1986). In case of the averaged
best-so-fars, the 95-percent confidence intervals represent the intervals within which the actual mean
best-so-fars would reside with probability 0.95.
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Figure 3.9: Best-so-far performance on S1.
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Figure 3.10: Best-so-far performance on IS1.
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to a higher fitness stage under the dissimilar mating. It turns out that the results are

interesting anomalies.

In Figure 3.11 and Figure 3.12 we see that the similar mating yields higher mean

population fitness than the dissimilar mating. Most surprisingly, the mean population

fitness obtained for the maximum dissimilar mating is relatively small and does not

seem to improve at all.

We have learned that by suppressing hitchhiking and the founder effect, the max-

imum dissimilar mating retains more genetic variation in the population. The further

exploration of the search space for the GA thus yields a better best-so-far performance,

yet at the expense of the mean population fitness. Namely, although the maximum

dissimilar mating GA is engaged in searching and constructing better best-so-far in-

dividuals, this mate selection would seem to create more lethal hybrids that degrade

the population’s fitness.

The following examination supports this claim. As a simple example, I suppose

the population is composed of bit-strings of length 4 and the relevant building blocks

that are able to contribute are 11** and **11 (the optimal string is thus 1111).

Consider lethal offspring that are easily removed from the population, say individuals

of fitness 0. Then, for example, given a string X, 1100, and two candidate mating

partners, Y1 (1100) and Y2 (0011), the maximum similar mating will require X to

select Y1 as the mate. Since X and Y1 are identical, their mating generates neither

the optimum nor lethal hybrids. In case of the maximum dissimilar mating, however,

Y2 will be chosen as the mate and there exists probability value 1
3

for generating the

optimum and 2
3

for lethal offspring after crossover.

The empirical results in Figure 3.13 validate the claim made above, from which

we can see the significant proportions (around between 0.4 and 0.5) of lethal offspring

generated from the maximum dissimilar mating. This indicates that for the maximum

dissimilar mating about 8 to 10 individuals (population size 20) at each generation are
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Figure 3.11: Averaged population fitness on S1.
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Figure 3.12: Averaged population fitness on IS1.
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lethal and rapidly disappear from the population. Similar matings, on the contrary,

prevent the creation of lethal offspring. In particular, matings between maximally

similar individuals preserve the proportions of lethal offspring at the level lower than

0.1 after a few generations, meaning that on average less than 2 strings are of fitness

value 0 (in fact, these lethal strings are generated from mutation, because crossover

does not have effects on the maximum similar mating scheme).

We can further compare the difference between the maximum similar mating

(MSM) and the maximum dissimilar mating (MDM). Figure 3.14 shows the results

over 50 runs for averaged mean population fitness (i.e., each run’s mean population

fitness is collected and then averaged over 50 runs), averaged maximum fitness (i.e.,

the maximum fitness in the population for each run is collected and averaged over 50

runs), and averaged minimum fitness (i.e., the minimum fitness in the population for

each run is collected and averaged over 50 runs) at each generation. It is interesting to

note that the difference between the averaged maximum and minimum fitness for the

MDM is greater than that for the MSM, indicating that the MDM indeed generates

larger fitness variation while achieving better best-so-far performance.

All the results above show that the maximum dissimilar mating mechanism retains

relatively large population diversity that facilitates the search for improving best-so-

far, at the expense of creating more lethal hybrids. In the next subsection, I present

an analysis on population diversity that helps enhance our understanding of the GAs

with different mate selection schemes.

3.4.4 Diversity

In simple genetic algorithms of finite population size, use of the “survival of the

fittest” principle generates high selection pressure towards higher fitness individuals.

The number of offspring of these individuals increases over time, and lower fitness

individuals are gradually discarded from the population. According to the schema
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Figure 3.13: Proportions of lethal offspring on IS1.
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theorem, the increase of the offspring number of highly-fit individuals results in ex-

ponentially increasing numbers of trials to potential building blocks in the search

space. The process of emphasizing building blocks brings about what is known as

convergence in the GA literature.

For some optimization problems, convergence may be an advantage. But if selec-

tion pressure is high enough that the degree of convergence is too strong, GAs may

suffer so-called premature convergence—the individuals prematurely converge on un-

desirable sub-optima. In this case, the population diversity is quickly lost and GA’s

exploration of the search space is greatly limited.

In many other GA applications, they would require individuals to be distributed

over several solutions. For example, an original motivation for developing niching

methods was to promote diversity in the traditional GA (Mahfoud, 1995). In this

approach, maintaining the population diversity means maintaining as many optima

(or sub-optima) as possible. As a second example, in a classifier system (Holland,

Holyoak, Nisbett, and Thagard, 1986) we are concerned with searching for a collec-

tive set of rules that performs well in a task environment, each rule playing a unique

and complementary role. Thus, the system needs to evolve a set of rules that are

specialized to various tasks (or niches) rather than producing a homogeneous (con-

verged) population of similar rules. Analogously, the computational model of the

immune system (Forrest and Perelson, 1991) requires a population of antibodies to

evolve to cover a set of antigens. If the antibody population is sufficiently large, it

clearly makes sense to evolve antibodies that are specialized to recognize different

classes of antigens instead of evolving one generalist antibody that weakly matches

all antigens. For these more ecological environments, the objective usually involves

promoting diversity and covering multiple solutions, instead of convergence on a single

solution.

Therefore, maintaining population diversity is crucial for the long term success
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of many evolutionary systems. If diversity is properly utilized, the population would

be able to adapt quickly to changes in the environment. It allows the population to

continue searching for productive niches, and avoid becoming trapped in the basins

of some local optima. In case of multimodal function optimization, diversity should

be utilized in search for locating a single best-so-far solution (or the global optimum),

or multiple solutions, or maintaining stable subpopulations. These three goals are

not mutually exclusive—techniques that try to reach the global optimum, or multiple

solutions in a multimodal function often encounter many local optima during the

course of search. Likewise, techniques that try to maintain subpopulations are likely

to perform a useful exploration in the search space and are also likely to identify the

global optimum if some local optima constitute the way to the global optimum. In

general, a meaningful GA exploration of the search space should be goal-oriented.

Thus far I have studied the GA’s search for a single solution in terms of the best-

so-far performance. In Chapters 4, 5 and 6, I will continue the study on this direction;

and in Chapter 7, the other two goals will be studied. Before doing so, let us first

inspect allelic diversity for the GAs with different mate selection schemesused in the

preceding sections.

Allele Diversity

The schema density plots used in the preceding sections serve well to study how

different mate selection schemesaffect the GA’s search process. The observation is

that the dissimilar mating schemes would maintain more genetic variation than the

similar mating schemes, yet we have not yet zeroed in on a firm examination on how

that is so. In this subsection, I adopt a microscopic genetic diversity measure that

would clearly help examine the dynamics of allelic frequencies for the different mate

selections.

Diversity measures based on allele frequencies are common in both genetic algo-
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rithms and biological genetics. With a single genome based on a binary alphabet, the

most common notion of “fully diverse” is a single goal containing 50% zeros and 50%

ones.

Let i be an arbitrary locus from 1 to l (string length). To measure diversity at

the ith locus, a simple bitwise diversity metric can be defined as follows (Mahfoud,

1995):

Di = 1− 2|0.5− pi|, (3.5)

where pi is the proportion of 1s at locus i in the current generation. Thus the

maximum of Di is 1 when there are equal proportions of 1s and 0s at locus i; and the

minimum is 0 when all individuals’ locus i is fixed to either 1 or 0.

Collins and Jefferson (1991) took the bitwise diversity metric (3.5) at each locus,

and used the average over all loci as a combined diversity measure for the population.

Therefore we have the allelic diversity measure for the population:

D =

∑l
i=1 Di

l
. (3.6)

D has a value of 1 when the proportion of 1s at each locus is 0.5 and 0 when

all of the loci are fixed to either 0 or 1. Effectively it measures how close the allele

frequencies are to a random population (1 being closest).

Figure 3.15 and Figure 3.16 show the allelic diversity for the four mate selection

schemes on the test functions S1 and IS1. We can see that the allelic diversity for the

maximum dissimilar mating is relatively close to 1 (random population), indicating

that the GA with this mate selection actually wanders around the search space to col-

lect existing information present in the population and locate useful genetic material.
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Figure 3.15: Averaged allelic diversity on S1.
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Figure 3.16: Averaged allelic diversity on IS1.

52



This is an example that GA efficiently utilizes diversity to further improvements. It

is worth mentioning that not all cases with allelic diversity being close to 1 would

guarantee a meaningful search; apparently without selection and variation a random

population keeps having the largest allelic diversity value 1, but no meaningful search

will be existing in such a population. This is consistent with the claim made by

Mahfoud (1995): “. . . , this microscopic perspective can be misleading. Biases in the

search space such as optima at Hamming cliffs or such as complementary dual op-

tima may allow diversity at all bit-positions, but typically do not maintain a variety

of subsolutions.” For example, the test function IS1 has dual optima and if we were

to locate the global optimum, it is more beneficial to maintain the building blocks

that constitute the global optimum (i.e., s1, s3, s5, and s7), rather than allowing

diversity at all the complementary dual schemata.∗∗

3.4.5 Tournament Mate Selection

The background selection scheme adopted so far has focused on fitness-proportionate

selection. In the beginning of this subsection I intend to adopt another selection

scheme and compare the difference between the two background selection schemes.

For lower computation cost, I use a binary tournament selection (Goldberg and

Deb, 1991) to pick two parents for each mating—with probability one the fitter of

the two randomly sampled individuals is chosen.

Figure 3.17 is the averaged best-so-far performance on IS1 for the GAs with

fitness-proportionate selection and tournament selection. The results show that the

tournament selection scheme consistently outperforms the fitness-proportionate se-

lection scheme. This is no surprising because it has been shown that tournament

∗∗I will revisit the diversity subject by using a Markov model in Section 4.3.1.
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Figure 3.17: Best-so-far performance on IS1.

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Generation

Av
er

ag
ed

 m
ea

n 
po

pu
la

tio
n 

fit
ne

ss

Population size=20

Tournament Selection
Proportional Selection

Figure 3.18: Averaged population fitness on IS1.

54



selection is capable of preventing too-quick convergence that normally occurs to the

fitness-proportionate method. In Figure 3.18 we also see that the tournament selection

maintains a better mean population fitness than the proportional selection. Unlike

the maximum dissimilar mating in which the best-so-far performance is improved at

the expense of the mean population fitness, the tournament selection scheme consis-

tently has an edge over the proportional selection on these two goals. Therefore, in

the rest of this chapter, the tournament selection is adopted as the background for

conducting experiments based on several mate selection schemes.

The mate selection schemes proposed thus far involve calculating the Hamming

distances for all the population individuals, resulting in O(N2) similarity compar-

isons. This is not computationally efficient. As a matter of fact, in natural world

individuals seldom look around all the population and then choose the best mate;

it is more frequent that an individual only picks a subset of population, performing

some kind of comparison and sorting, and finally decides to mate with the most sat-

isfying population member. The mate selection strategies based on a subset of the

population is a natural way to save computational cost. This inspires us to adopt the

following mating strategies:

During each mating event, a binary tournament selection—with probability one

the fitter of the two randomly sampled individuals is chosen—is run to pick out the

first individual, then choosing the mate according to the following schemes:

Tournament Selection (TS): Run the binary tournament selection again to choose

the mate.

Tournament Dissimilar Mating (TDM): Run the binary tournament selection

two more times to choose two candidate partners; then the one more dissimilar

to the first individual is selected for mating.

Tournament Similar Mating (TSM): Run the binary tournament selection two
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more times to choose two candidate partners; then the one more similar to the

first individual is selected for mating.

Random Dissimilar Mating (RDM): Randomly choose two candidate partners;

then the one more dissimilar to the first individual is selected for mating.

Random Similar Mating (RSM): Randomly choose two candidate partners; then

the one more similar to the first individual is selected for mating.

I still use the Hamming distance as the similarity metric. Notice that in the mate

selection schemesabove if the two candidates are of the same Hamming distance to

the first individual, then one of them is randomly selected.

In the five approaches above, the first individual is always sampled by the regular

tournament selection. For the tournament dissimilar and similar mating, there are

two ways to affect an individual’s probability of being selected. The first comes from

the explicit fitness evaluation provided by a given test function. The second is from

the coevolution of population members, each individual preferring other individuals

that possess certain characteristics. The two sources complicate the actual probability

of an individual being selected. I expect that tournament selection contributes more

selection pressure toward highly-fit individuals, and the mate preference refines the

searching for mates. As for the random dissimilar and similar mating, the selection

pressure is reduced by removing the tournament selection acting upon the candi-

date mates. The only source that affects the mate selection probability is precisely

the mating preference, which exerts a selection pressure on the population based on

genotype.

For the GAs with these five tournament-based mate selections, the experiments

are conducted for 50 runs, based on population size 20, mutation rate 0.005, and one-

point crossover rate 1. Figure 3.19 shows the experimental results for the test function

S1. Analogous to the results obtained in the foregoing subsections, dissimilar mating
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Figure 3.19: Best-so-far performance on S1.
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Figure 3.20: Best-so-far performance on IS1.
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outperforms others in terms of the best-so-far performance. In the tournament dis-

similar mating, when tournament selection is incorporated for selecting the second

individual, it obviously confers larger selection pressure towards highly-fit individuals

and yields better results than the random dissimilar mating. (Though Figure 3.19

seems to show that the tournament dissimilar mating outperforms the random dissim-

ilar mating only over early generations, the discrepancy will be clearer if we compare

the mean function evaluations for attaining the global optimum (20 1’s) for these

two schemes: the tournament dissimilar mating spent an average of 4783 evaluations

to reach the optimum, and for the random dissimilar mating it is 5515.) However,

Figure 3.20 shows a different situation: the best-so-far for the tournament dissimilar

mating rises quickly and stops before 100 generations. On the contrary, the best-so-

far for the random dissimilar mating exhibits gradual improvements, exceeding the

performance of the tournament dissimilar mating around generation 120, and never

stops before generation 300.

We can further inspect the averaged population fitness. Recall that in the max-

imum dissimilar mating case the mean population fitness is at a much lower level

than the other similar mating schemes. Figure 3.21 shows that the random dissimilar

mating, while achieving a much better best-so-far performance on IS1, still main-

tains the mean population fitness at the same level as those of the two similar mating

schemes. Figure 3.22 is the experimental results that correspond to the proportions

of the resulting lethal offspring (strings of fitness value 0) generated from these mat-

ing schemes. Before generation 100, the lethal proportions of all five schemes have

substantially dropped down to zero, even in the random dissimilar mating case. This

shows that the random dissimilar mating can retain reasonable mean population fit-

ness, while gaining much better advancements of the best-so-far.
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Figure 3.21: Averaged population fitness on IS1.
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Figure 3.22: Proportions of lethal offspring on IS1.
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In Section 3.4.1, I have discussed that in function S1 hitchhiking is a problem for

GA’s search that worsens as the selection pressure becomes larger. Though the tour-

nament dissimilar mating involves a higher selection pressure than the random dissim-

ilar mating, its preference for dissimilar mates overwhelms the hitchhiking problem

and yields better results. On the other hand, in function IS1 where the founder effect

becomes dominant (see Section 3.4.2), the higher selection pressure resulting from

the tournament dissimilar mating facilitates the founding of incompatible schemata.

When schemata that are not components of the global optimum were founded, the

overall performance is greatly impeded. This accounts for the worse result in the

tournament dissimilar mating, compared to that of the random dissimilar mating.

This phenomenon will become more salient when I present the experimental results

on a deceptive test function in the next subsection.

In addition, though RDM removes the selection pressure toward higher-fitness

individuals while selecting mating partners to reduce the degree of premature con-

vergence, this in turn increases the likelihood of useless hybrids being generated by

lower-fitness parents. This may account for why in Figure 3.22 the proportion of

lethal offspring generated by RDM is larger than that generated by TDM in the

earlier generations. Justifying this conjecture would need more analysis, and this

direction will be deferred for future work.

3.4.6 Effects of Deceptiveness

The problems of bounded deception designed by Goldberg et al. (1989) were

used to investigate the performance of GAs on deceptive functions in which low-

order, highly-fit schemata mislead GAs away from global optima and toward the

complement of the global optimum. One example that exhibits this kind of deception

is an order-5 deceptive function as defined in Table 3.3.

The fitness contribution of each block increases as the number of zeros in the

function rises. On a similar testbed, 3-bit fully deceptive function, Goldberg et al.

(1989) calculated the average fitness of schema and showed that GAs are likely to be
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Table 3.3: A Deceptive, Order-5 Problem.

bit value bit value
11111 8 11000 3
00000 5 11100 2
10000 4 11110 1
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Figure 3.23: Best-so-far performance on D1.

led toward the complement of the global optimum.

To demonstrate the effects of the deception on the search power of GAs, I designed

a 20-bit deceptive function D1, which is composed of four consecutive blocks of the 5-

bit deceptive function. The deceptive function D1 is an extension of the test function

IS1—the founder effect may occur when a particular EA acts on it. Furthermore,

the deceptiveness embedded in this function may gradually mislead GA away from

the global optimum. Therefore, I expect that this 20-bit deceptive function imposes

more difficulty on GAs than IS1.

The results of the GAs with the five tournament-based mate selection schemes are

presented in Figure 3.23, where all the parameters are the same as those used in the
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previous subsection. Compared with Figure 3.20, it is clearly that the performance of

the tournament dissimilar mating is worsened, since its best-so-far curve falls below

that of the regular tournament selection when generations are large enough. The GA

with the random dissimilar mating still gains gradual improvements and never stops

before generation 300.

As I discussed in the preceding subsection, the tournament dissimilar mating

involves a higher selection pressure than the random dissimilar mating, which could

be beneficial in improving the best-so-far performance on a non-deceptive testbed.

However, on a deceptive function where the founder effect may become dominant,

the higher selection pressure can in turn enhance the convergence on schemata that

are not components of the global optimum, and the GA’s search process is greatly

impeded. On the other hand, since RDM removes the selection pressure toward

higher-fitness individuals while selecting mating partners, this in turn reduces the

degree of premature convergence. Thus the GA’s population can further explore the

search space to continue improving the best-so-far performance.

These phenomena will be seen again in Chapters 5 and 6.

3.4.7 Effects of Population Size

As population size is a source of diversity for GAs, I expect that population

sizes have important effects on GA’s behavior. In this subsection, I present some

experiments for the best-so-far performance of the GAs based on different population

sizes.

The experiments are conducted over 30 runs based on one-point crossover rate 1,

mutation rate 0.005, with population size 20, 50, 80 and 200 for each case. For each

run, I use the maximum of 10000 function evaluations as a baseline for comparing

the effects of the mate selection schemes. The results are shown in Figure 3.24.
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Figure 3.24: Averaged Best-so-far on IS1 for various population sizes.
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The first three plots (population size 20, 50, and 80) show that the random dis-

similar mating GA achieves higher averaged best-so-far than the other two, although

it has a slower rate of improvement. Again, the possible reason is that the random

dissimilar mating does not employ the selection pressure toward higher-fitness indi-

viduals while selecting mating partners, which in turn slows down the GA’s searching

process.

For small population sizes (20 and 50), the trends in these results show that the

GA with the tournament dissimilar mating outperforms the GA with the traditional

tournament selection. In addition, in case of population size 200, these three GAs all

reach the global optimum. This indicates that larger population sizes can suppress

the difference between the best-so-far values attained by the three GAs.

These results show that population size is an important factor that affects the GA’s

performance. If the time allowed for an experiment is limited, such as maximum

function evaluations, then using the tournament dissimilar mating would be more

beneficial. On the other hand, if the time for experiments is not severely limited, one

may want to use the GA with the random dissimilar mating scheme to achieve higher

best-so-far values.

In Chapter 5 and 6 I will use harder problems to further investigate the effects of

the three mate selection schemes, where I use moderate population sizes. As will be

seen, those results are consistent with the results obtained above.

3.5 Summary and Discussions

In this chapter the framework proposed for investigating similarity and dissimilarity-

based mate selection schemesallows us to conduct a systematic analysis to deepen our

understanding of GAs. I first started with mating preference for the maximally simi-

lar or dissimilar individuals, and showed that, in the context of GA, hitchhiking and

the founder effect can be explained in terms of the schema analyses, and these two

phenomena can be suppressed by dissimilar mating choices. Afterwards I introduced
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more complicated means for calculating individuals’ probabilities of being selected

via combining similarity test and fitness-proportionate selection. Allowing popula-

tion members to discriminate candidate mates introduces another source of selection

pressure, in addition to the selection pressure arising from the environment. The re-

sulting GA hence forms a more complex system in which individuals’ fitnesses depend

on both the environment and other population members.

The very essence of good GA design is retention of diversity, furthering explo-

ration, while exploiting building blocks already discovered. The results I obtained

demonstrate that proper mating preferences are shown to indeed facilitate discrimi-

nating individuals in the population, retain genetic diversity, and better utilize build-

ing blocks already discovered for exploration of the search space. The advantage of

using dissimilarity-based mating preferences is reflected by the corresponding GA’s

improved best-so-far performance.

Note that in studying the creation of lethal hybrids and the diversity issue, the

most surprising is that the results in Figure 3.13, 3.15 and 3.16 show a relatively

large difference between MDM and PDM, compared with the difference between the

PDM, PSM and MSM, since one may expect that the difference between MDM and

PDM, and the difference between PDM and PSM are at similar levels. The reason

could be that MDM is a relatively “disruptive” mating strategy which simply selects

the most dissimilar mating partners to collect different information for increasing a

single individual’s fitness, yet at the expense of generating more useless hybrids. To

test this hypothesis would need more analysis, which will be deferred for future work.

After studying the four mating schemes based on fitness proportionate selection,

I then adopted tournament selection as the background selection scheme to proceed

for other analyses, due to its general superior performance to fitness proportionate

selection. The relevant results again show that the dissimilar mating schemes are

more beneficial than the traditional selection and similar mating schemes.
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I also conducted studies of the effects of population size on the GA’s search power.

The results show that if the time allowed for an experiment is limited, then using the

tournament dissimilar mating is likely to facilitate the GA’s search process. On the

other hand, if the time for experiments is not severely limited, we can use the random

dissimilar mating scheme to improve the GA’s best-so-far performance.

In conclusion, the analyses reveal that individuals of more distinct characteristics

(in terms of the Hamming distance) collectively facilitate the search for a single, bet-

ter solution. The problem it would cause is lethal hybrids: matings between dissimilar

individuals give crossover more opportunity to disrupt existing building blocks, lead-

ing to decrease of the mean population fitness. Therefore, to avoid producing lethal

offspring, it may require that matings occur only between individuals of similar char-

acteristics.

In the next chapter, I will use a Markov chain model to analyze GA for several

mate selection strategies. Although the Markov chain approach involves enormous

numbers of states that generate great computation burden, and I have to concentrate

on problems of limited state space size, it turns out that this model can provide useful

insights—the behavior of an GA on small (computationally tractable) problems can

actually be observed in larger problems. I will use the Markov chain analysis to

enhance the understanding of the GAs studied in this chapter, and use the insights

obtained to further investigation in the following chapters.
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CHAPTER 4

MARKOV CHAIN ANALYSIS

4.1 Introduction

A large number of systems arising in practice have the property that the present

state completely determines the future; i.e., the past states have no influences on

the future. This property is called the Markov property, and systems satisfying this

property are called Markov chains for discrete time cases, or Markov processes for

continuous time cases. For example, let the system be observed at the discrete mo-

ments of time n = 0, 1, 2, . . ., and let Xn denote the state of the systems at time n.

Then Xn has the Markov property if

P (Xn+1 = xn+1|X0 = x0, . . . , Xn = xn) = P (Xn+1 = xn+1|Xn = xn)

for every choice of the nonnegative integer n and the numbers x0, . . . , xn+1, each in

the state space of the system.

A discrete-time system that satisfies the Markov property and is composed of N

states can be completely described by the N × N state transition matrix Q, which

gives the probability of transitioning from state i at time n to state j at time n+1:

Q(i, j) ≡ pi,j ≡ P (Xn+1 = j|Xn = i)

The pi,j values define the “one-step” probability transition matrix Q, since it

describes the probability of transitioning from state to state in one time step. The

67



transient behavior of the system is obtained from the “k-step” probability transition

values, which are obtained from the kth power of Q:

Qk(i, j) ≡ p
(k)
i,j ≡ P (Xn+k = j|Xn = i)

Since a “state” of simple genetic algorithms can be defined by a particular popu-

lation, and the composition of the population at the next step is entirely determined

by the present population, it has been quite natural to model simple GAs as Markov

chains (De Jong 1975; Goldberg and Segrest 1987). One can then imagine a state

space consisting of all possible populations and examine the characteristics of the

population trajectories a GA produces over time.

There are several Markov models that were derived assuming infinite population

and involve characterizing steady state behavior (Davis and Principe, 1991; Suzuki,

1993; Rudolph, 1994). On the contrary, the model developed by Nix and Vose (1992)

was based on finite population size. De Jong, Spears, and Gordon (1994) applied this

finite-population model to investigate GA-based function optimization (GAFO), in

which they performed transient Markov chain analysis to calculate the mean waiting

times. The Nix and Vose model and the GAFO theory of De Jong et. al. serve as

the basis for the Markov chain analysis of mate selection in this chapter.

In the following sections, I briefly summarize the Nix and Vose Markov model.

Then I show how the mate selection schemes are incorporated in this model, and use

them for simple visualization analysis. Afterwards, a brief summary of the GAFO

theory of De Jong et. al. is presented, following some computational explorations for

understanding effects of different mate selections.

4.2 The Nix and Vose Markov Model

Nix and Vose (1992) introduced a Markov chain model that is intended to represent

a simple, finite-population GA based on a standard binary representation, fitness-
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proportional selection scheme, standard mutation, and one-point crossover operators.

The simple GA model they considered moves from one generation to the next as

follows:

(1) Obtain two parents by proportional selection.

(2) Mutate (mutation implies change) the parents with rate µ.

(3) Produce the (mutated) parents’ child by one-point crossover with rate χ.

(4) Put one child into the next generation.

(5) If the next generation contains less than the population size, go to step 1.

The search space is the set of all length l strings and r = 2l is the total number of

possible strings. If n is the population size, then the number of possible populations,

N , corresponding to the number of possible states is:

N =

(
n + 2l − 1

2l − 1

)
.

The possible populations are described by the matrix Z, which is an N×r matrix.

∗ The ith row φi = 〈zi,0, . . . , zi,r−1〉 of Z is the incidence vector for the ith population.

Thus zi,y is the number of occurrences of string y in the ith population, where y is

the integer representation of the binary string. For example, suppose l = 2 and n =

2; then r = 4, N = 10 and the Z matrix is shown in Table 4.1:

With these definitions, Nix and Vose derived the formula for calculating exact

state transition probabilities Qi,j:

Qi,j = n!
r−1∏
y=0

(M [ Fφi

|Fφi| ]y)
zj,y

zj,y!
, (4.1)

where F is determined from the fitness function, and M depends on the mutation

and crossover operators.

Considerable insights into transient behavior can be obtained computationally by

computing and analyzing Qk directly. Unfortunately, the size of the Q matrix for

∗For programming convenience I transpose the Z matrix of Nix and Vose (1992), as indicated by
De Jong et al. (1994).
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Table 4.1: The Z matrix (n=2 and l=2).

State 00 01 10 11
P1 0 0 0 2
P2 0 0 1 1
P3 0 0 2 0
P4 0 1 0 1
P5 0 1 1 0
P6 0 2 0 0
P7 1 0 0 1
P8 1 0 1 0
P9 1 1 0 0
P10 2 0 0 0

typical GAFO applications is computationally unmanageable since the number of

states N grows rapidly with population size n and string length l. For example, a

GA with population size 10 and bit-string length 6 has about 6.2× 1011 states.

4.3 Incorporation of Mate Selection in the Nix and

Vose Markov Model

The Nix and Vose Markov model consists of two key operators: F and M , where

F relates to selection, and M relates to mutation and crossover. Since the mate

selection schemes only affect the GAs’ selection processes, altering the operator F

is the major objective in this chapter. In addition, since the Nix and Vose model

was developed using fitness proportionate selection, I will concentrate on modifying

this model based on the first four mate selection schemes proposed in the foregoing

chapter—the maximum similar mating, the proportional similar mating, the propor-

tional dissimilar mating, and the maximum dissimilar mating. The tournament-based

mate selections will not be explored in this thesis, but will be deferred for future work.

In the formal model of Vose and Liepins (1991), each string in the search space is

specified by the corresponding integer equivalent between 0 and 2l-1. The population
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at generation t is represented by two vectors, ~p(t) and ~s(t), each of length 2l, where

~p(t) specifies the composition of the population at generation t, and ~s(t) represents

strings’ probabilities of being selected. Let F be a two-dimensional matrix such that

Fi,j = 0 for i 6= j, and Fi,i = f(i), where f(i) is the fitness of string i. Then under

proportional selection it yields

~s(t) =
F~p(t)∑2l−1

i=0 Fi,ipi(t)
, (4.2)

where pi(t) denotes the ith component of ~p(t), which is the proportion of the popula-

tion at generation t consisting of string i. Therefore the ith component of ~s(t) is the

probability that string i will be selected as a parent.

For example, if l=2 and the population consists of two copies of 11 and one copy

of 00 and 01, then

~p(t) = (0, 0.25, 0.25, 0.5).

If the fitness is equal to the number of ones in the string, then

~s(t) = (0, 0.1667, 0.1667, 0.6667).

Given these preliminaries, one can compute the expected proportion of string k

at generation t+1:

E(pk(t + 1)) =
∑
i,j

si(t)sj(t)ri,j(k), (4.3)

where ri,j(k) is the probability that string k will be produced by a recombination

event between string i and string j, given that i and j are selected to mate.

Then Vose and Liepins derived the operator M to encapsulate the calculations

regarding crossover and mutation that account for ri,j(k). Finally, Nix and Vose

(1993) followed these results to construct the finite-population model as described in

Equation 4.1.

To understand how the mate selection schemes are integrated with the Nix and

Vose Markov model, let us take a closer look at Equation 4.3, in which both the indi-

viduals selected for mating—string i and string j—are based on fitness-proportionate
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selection. Recall that the maximum similar mating scheme proposed in Chapter 3

picks up the first individual, which plays the role of string i in Equation 4.3, by

fitness-proportionate selection. Then the population member who is the most similar

to the first one (in terms of the Hamming distance) is chosen as the second individ-

ual, which appears as string j in Equation 4.3. Hence the way of calculating sj(t) in

Equation 4.3 is the only part that needs to be reconsidered.

Since the maximally similar individual must be chosen as the second string, it

turns out that the fitness matrix F needs to be re-defined so that only the string

that is maximally similar to the the first string can possess non-zero fitness values. If

several strings are of the same minimum Hamming distance to the first string, these

strings are assigned the same fitness values.

Plugging the new fitness matrix F into Equation 4.2 yields the new selection

probability sj(t) of string j for Equation 4.3. The resulting Markov model is exactly

the GA model with the maximum similar mating scheme.

The implementation above can be summarized in Table 4.2.

As for the maximum dissimilar mating, the first string will select as its mate the

string whose Hamming distance is the maximum. Thus it only needs to replace “min-

imum” by “maximum” in Table 4.2, and this implementation is shown in Table 4.3.

We can proceed to derive the Markov model for the proportional similar mating in

the same way. Recall that in the proportional similar mating, the first string is picked

by fitness-proportionate selection, and the probabilities of strings being selected as

the first string’s mate are reversely proportional to their Hamming distances. Since

strings’ Hamming distances may be zero, I offset all the Hamming distances by 1 to

avoid the case of dividing by zero. The implementation is shown in Table 4.4.

As for the proportional dissimilar mating, since the probabilities of population

members being selected as the mate are proportional to their Hamming distances, it

is easy to obtain the corresponding implementation as show in Table 4.5.
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Table 4.2: Procedure of calculating the second individual’s probability of being se-
lected in Equation 4.3 for the maximum similar mating.

1. Let Fi,j=0 for all i and j.

2. For i from 1 to r, do:

a. For j from 1 to r, compute the Hamming distance of string j to string i,
if zm,j 6= 0, where zm,j is the number of occurrences of string j in the mth
population.

b. Fj,j =1, if string j is the only one that possesses the minimum
Hamming distance;
or Fj,j = 1

u
, if u is the number of strings whose Hamming distances

are the minimum.

Table 4.3: Procedure of calculating the second individual’s probability of being se-
lected in Equation 4.3 for the maximum dissimilar mating.

1. Let Fi,j=0 for all i and j.

2. For i from 1 to r, do:

a. For j from 1 to r, compute the Hamming distance of string j to string i,
if zm,j 6= 0, where zm,j is the number of occurrences of string j in the mth
population.

b. Fj,j =1, if string j is the only one that possesses the maximum
Hamming distance;
or Fj,j = 1

u
, if u is the number of strings whose Hamming distances

are the maximum.
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Table 4.4: Procedure of calculating the second individual’s probability of being se-
lected in Equation 4.3 for the proportional similar mating.

1. Let Fi,j=0 for all i and j.

2. For i from 1 to r, do:

a. For j from 1 to r, compute the Hamming distance of string j to string i,
if zm,j 6= 0, where zm,j is the number of occurrences of string j in the mth
population.

b. Fj,j = 1
Dj+1

, where Dj represents the Hamming distance of string j.

Table 4.5: Procedure of calculating the second individual’s probability of being se-
lected in Equation 4.3 for the proportional dissimilar mating.

1. Let Fi,j=0 for all i and j.

2. For i from 1 to r, do:

a. For j from 1 to r, compute the Hamming distance of string j to string i,
if zm,j 6= 0, where zm,j is the number of occurrences of string j in the mth
population.

b. Fj,j = Dj, where Dj represents the Hamming distance of string j.
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4.3.1 Visualizing Markov Models and Diversity

Having modified the Markov model for the mate selection schemes, I can compute

the state transition matrix for each case. Let QMSM , QPSM , QPDM , and QMDM

correspond to the state transition matrices for the maximum similar mating, the

proportional similar mating, the proportional dissimilar mating, and the maximum

dissimilar mating, respectively.

Visualizing Qk provides us with the insight regarding the effects that different

mate selections have on the state transition matrix Q. (For example, see Horn, Gold-

berg and Deb (1994), and De Jong, Spears, and Gordon (1994) for additional evidence

concerning the usefulness of this approach.) This can be implemented through plot-

ting Qk as an image, the gray level of coordinate (i,j) reflecting the probability that

the GA will move from state i to state j in k steps. The density of blackness at each

(i,j) indicates the corresponding k-step transition probability, where the blacker a

point, the higher the corresponding probability value.

As an example, I use a fitness function with f(y) = integer(y) + 1, where

integer(y) returns the integer equivalent of the bit string y. The string length is

2, population size is 3 (thus the number of total states is 20), crossover rate is 1, and

mutation rate is 0.01.

Figure 4.1 shows the results for various Qk
m, where m represents MSM, PSM,

PDM and MDM. Let us first inspect the case for one-step transition, i.e., k =1.

A clear, visible diagonal line from Q1
MSM indicates that significant changes in the

population in one generation are very unlikely. As we scan the images from left to

right, we see that this situation can be altered by gradually allowing matings to take

place between relatively dissimilar individuals, generating more diffuse state transition

matrices. The net result is that dissimilarity-based matings can make larger changes

more easily.
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Figure 4.1: Visualization of Qk (l=2, n=3).
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Figure 4.2: Visualization of Qk (l=3, n=3).
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As time proceeds, we see that the changes in the probability distribution are

already evident in Q4
m and even more evident in Q10

m and Q40
m . The emerging verti-

cal lines represent the particular populations at which the steady state distribution

will accumulate most of its probability mass (i.e., the populations most likely to be

observed when the GA settles into its dynamic equilibrium).

As one more example, Figure 4.2 shows the results for the case of string length 3,

population size 3 (the number of total states is 120). In this figure, we can even more

clearly see emergent vertical lines.

Upon a closer examination I find that dissimilar matings generally allow the GA to

jump to more states than similar matings. For example, while the GA is in dynamic

equilibrium, if one hopes to observe, at the next time step, to how many states the

GA can jump from state 1 with probability greater than a threshold, say 1
N

= .0082

for the case of l = 3 and n = 3 (N is the number of total states), then it is 11

states for the maximum similar mating, and 22 states for the maximum dissimilar

mating. Figure 4.3 shows more results for the numbers of the states that are of

transition probability over threshold 1
N

while the GA is in dynamic equilibrium and

stays previously at state i (i = 1, . . . , N). (The top and the bottom plots correspond

to l = 2, n = 3 and l = 3, n = 3, respectively.) All these results show that the GA

with the maximum dissimilar mating can jump to more states than the GA with the

maximum similar mating. That is, dissimilarity-based matings can make more state

changes.

We can use the Markov model to further examine if dissimilarity-based mate

selections would maintain larger population diversity. Recall that, in the preceding

section, the matrix Z represents possible populations, which is an N × r matrix. (N

is the number of possible populations and r is the total number of possible strings.)

The ith row φi = 〈zi,0, . . . , zi,r−1〉 of Z is the incidence vector for the ith population.

zi,y is the number of occurrences of string y in the ith population (y is the integer
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Figure 4.3: Number of states with transition probability over the threshold 1
N

.

representation of the binary string).

Let b denote the row vector of strings’ binary representations, in which the ith

component corresponds to string i’s binary representation (i = 0, ..., r − 1). Then

bi,j represents the bit value of string i’s locus j (j = 1, ..., l). For instance, if binary

strings are of length 2, then b = 〈00, 01, 10, 11〉, and b0,1 = 0, b1,2 = 1, b3,1 = 1 and so

forth. To compute the proportion of 1s at each locus in the ith population, we need

to extend the definition of vector inner product to include products of scalars and bit

strings.

For example, φ2 = 〈0, 0, 1, 1〉 represents state P2 of Table 4.1, and its inner product

with b = 〈00, 01, 10, 11〉 is:

3∑
i=0

z2,i · bi = 0 ∗ (00) + 0 ∗ (01) + 1 ∗ (10) + 1 ∗ (11)

= (10) + (11).
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The result above shows that the number of 1s at the first locus (the right bit of

strings) is 1, and that at the second locus (the left bit of strings) is 2. Dividing the

number of 1s at each locus by population size 2 yields:

p1 = 0.5 and p2 = 1

where pi represents the proportion of 1s at locus i.

Thus the inner product of φi and b, dividing by population size n, represents the

proportion of 1s at each locus in the ith population.

By Equation (3.5) we can calculate the bitwise diversity Dj, j = 1, . . . , l. Then

the average over all loci by Equation (3.6) yields the allelic diversity for the ith

population, denoted as DIVi. (I adopt DIVi to avoid conflicting with the notations

in Equations (3.5) and (3.6).)

Let DIV denote the column vector of populations’ averaged allelic diversity,

where DIVi is the averaged allelic diversity corresponding to the ith population

(i = 1, ..., N). Then the expected allelic diversity at generation k is:

E(DIV ) = (iniP ·Qk) ·DIV, (4.4)

where iniP is a row vector whose ith component represents the probability of the

GA being in state i at generation 0 (the initial generation), and thus iniP · Qk is

states’ probability distribution at generation k. In this chapter, I consider randomly

initialized GAs. Thus the probability of a GA being in state i at time 0, denoted as

P (X0 = i), is:

P (X0 = i) =
n!

zi,0! · · · zi,r−1!
(
1

r
)n.

Since there are r possible strings, each string has a probability of r−1 of occurring.

There are n strings in the population, and the multinomial distribution takes into

account the different ways the strings can be inserted into the population to generate

a unique state (De Jong, Spears, and Gordon, 1994).
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Figure 4.4: Averaged allelic diversity.

By Equation (4.4), we can compute the exact average allelic diversity for any

cases. For illustrations, I still use the fitness function with f(y) = integer(y) + 1,

where integer(y) returns the integer equivalent of the bit string y. Figure 4.4 shows

the results for string length 2 and several different population sizes (n = 3, . . . , 8),

based on crossover rate 1 and mutation rate 0.01. The results show that the av-

eraged allelic diversity of dissimilarity-based mate preferences is larger than that of

similarity-based mate preferences. In particular, we can see that the difference be-

tween the dissimilarity and similarity-based mate selections enlarges as population

size increases.
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4.4 The GAFO Theory

In the foregoing chapter I was concerned with GA’s search power in terms of the

best-so-far performance. Such a performance metric is a form that a GA practitioner

who is interested in function optimization would generally care about. For simple

test functions the optimum is easily to locate and one may use the expected time

(generations) to first encounter the optimum as a metric to compare different GAs’

search power. In this section I use the GAFO (genetic algorithm function optimiza-

tion) idea developed by De Jong et al. (1994) to examine the effects of different mate

selection schemes on GA’s performance.

4.4.1 Expected Waiting Time Analysis

De Jong et al. extended the Nix and Vose Markov chain analysis to provide

answers for the expected waiting time until an event of interest is first observed. The

observation is that the state transition matrix Q can be used to compute “mean first

passage times” for going from state i to state j. If one is interested in knowing how

long the GA would have to run on average before first reaching a set J of states, given

that the process is currently in state i, then the expected waiting time is:

EWT (J) =
∑

i/∈J

P (X0 = i)mi,J ,

where mi,J denotes the mean first passage time from state i to any of the states in set

J , and i is not in J ; mi,J can be computed from the system of simultaneous equations

mi,J =
∑
j∈J

Qi,j +
∑

k/∈J

Qi,k(1 + mk,J).

If one defines J to be the set of states containing at least one copy of the optimum

string, then EWT (J) is the expected number of generations until the optimum is

first encountered.

In the rest of this chapter I present some preliminary results to study effects of

various factors on GA’s EWT analysis. Characterizing these effects may provide
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Figure 4.5: Interacting effects of mate selection and mutation.

useful insights and make predictions about how to improve GA’s performance in the

context of function optimization.

Interacting Effects of Mate Selection and Mutation

As an example, I again use the test function f(y) = integer(y) + 1, where

integer(y) returns the integer equivalent of the bit string y. Due to the compu-

tational limitation of the Nix and Vose model (as discussed in Section 4.2), I use the

simplest possible case to proceed the investigation. In the following chapters, I will

use more realistic population sizes and string lengths for further empirical study. In

this example, the string length l is 2, population size n is 5, crossover rate is 1, and

the optimum string is 11. For this case the first goal is to investigate the interacting

effects of mate selection and mutation on the GA’s EWTs to the optimum.

Figure 4.5 shows the results obtained for the maximum similar mating (MSM),

the proportional similar mating (PSM), the proportional dissimilar mating (PDM),

and the maximum dissimilar mating (MDM), based on mutation rates ranging from
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Figure 4.6: Interacting effects of mate selection and crossover.

0.01 to 0.2. The top plot is the exact EWTs and the bottom plot corresponds to the

ratios of the EWTs from the MSM, the PSM, and the PDM to that from the MDM.

One can see that the maximum dissimilar mating generally has the lower expected

waiting times than the other three. This agrees with the observations in the preceding

chapter that dissimilar mating schemes generally outperform similar mating schemes

if the goal is to find the best-so-far.

Note how dissimilar matings become increasingly important as mutation rate de-

creases (the larger the ratios, the better the relative performance of the maximum

dissimilar mating). As mutation rate decreases, dissimilar mating would become a

dominant factor that brings forth population diversity for further exploration of the

search space.

Interacting Effects of Mate Selection and Crossover

One can also use these models to analyze the interacting effects of mate selection

and crossover on EWTs. Figure 4.6 shows the results obtained for the four mate
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Figure 4.7: Effects of Scaling.

selection schemes, based on crossover rates ranging from 0.05 to 1. The top plot is for

the exact EWTs and the bottom plot shows the ratios of the EWTs from the MSM,

the PSM, and the PDM to that from the MDM.

One can see that the maximum dissimilar mating generally has the least expected

waiting times than the other three. In particular, the dissimilar mating schemes

demonstrate increasingly improved performance as crossover rate increases. This

agrees with my intuition that both proper mate selection and crossover must operate

together to enhance the power of simulating information exchange in GA’s population.

Effects of Scaling

One can investigate how difficulties of test functions affect the GA’s performance.

It is well-known that proportional selection is sensitive to simple linear scaling of

the fitness function (De Jong, Spears, and Gordon, 1994). For example, given the

test function f and its variant, g = f + 100, one would expect that the GA is more

incapable of locating the optimum of g, since the fitness of function g’s optimum is
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relatively close to other fitness values.

Since MDM and PDM tend to choose dissimilar mating partners, essentially these

two dissimilarity-based mate selections introduce additional effects of magnifying the

difference between individuals. (See the simple example illustrated in Section 2.1.)

But this is not the case for MSM and PSM. Therefore, if a GA is presented with the

test function g, I predict that the performance difference between dissimilar mating

(i.e., MDM and PDM) and similar mating (i.e., MSM and PSM) is larger than that

with the test function f .

Figure 4.7 illustrates the EWT analysis for the four mate selection schemes based

on the test function g. Compared with Figure 4.6, the performance discrepancy (the

ratios of EWTs) between similar mating and dissimilar mating is enlarged, which con-

firms my hypothesis. These results show that the dissimilarity-based mate selection

is beneficial in this more difficult function.

4.5 Summary and Discussions

This chapter presents my initial exploration of transient Markov chain analysis as

a theoretical basis for the similarity and dissimilarity-based mate selection schemes.

Although closed form analysis is generally difficult, I gain useful insights by means

of computational exploration of the transient behavior of the Markov models to char-

acterize effects of various factors that affect GAs.

Visualizing the state transition matrix Q is a useful technique to see how the GA

population becomes more diverse and diffuse in case of the dissimilar mate selections.

I have also used the Markov model to investigate the effects of mate selection on

population diversity. The results show that dissimilar mating generates larger popu-

lation diversity than similar mating, which further supports the empirical results of

population diversity obtained in the previous chapter.

As mutation rate decreases, the importance of mate selection in improving the
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GA’s performance becomes more salient. In addition, the study on the interacting

effects of mate selection and crossover agrees with my intuition that both factors

working together enhance the GA’s search power. I have also demonstrated that the

dissimilar mating schemes are beneficial in finding the optimum when test functions

are relatively difficult.

A primary concern of Markov chain analysis is the scalability of the results. Due

to the computational limitation of the Nix and Vose model, I will continue the study

of mate selection through empirical methodologies in the following chapters, where

more realistic population sizes and string lengths will be used.

There are a variety of directions worth exploring. For example, in addition to

expected waiting times, the variance of the waiting times is also an important metric

that can be derived from the mate selection Markov models. Since only the mating

schemes based on fitness proportionate selection are studied in this chapter, in future

work I also hope to develop a Markov model using tournament-based selection to

further investigate the effects of mate selections based on tournament selection.
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CHAPTER 5

BUILDING-BLOCK-BASED TEST FUNCTIONS

5.1 Introduction

In the preceding chapters, I have identified mate selection as an important factor

that affects GA’s search power. The results obtained show that dissimilarity-based

mate preference facilitates the GA’s exploration of the search space. Simply stated,

the dissimilarity-based mate selections could get the GA away from hitchhiking and

the founder effect, and further improve the GA’s searching for best-so-far solutions.

In this chapter, I continue the study based on more complicated test functions

for larger population sizes and string lengths. The investigation first concentrates

on several original versions of the Royal Road functions, since these function are a

class of building-block-based functions that serve as idealized testbeds for comparing

effects of different mate selection schemes. I then continue testing the mate selection

schemes on the hyperplane-defined functions, which extend the complexity of fitness

landscapes so that the test functions may reflect more aspects of difficulties imposed

on the GA’s search power by real problems.

Based on the insights obtained from the preceding analysis, it is likely that dis-

similar mating can improve the GA’s search power in terms of locating best-so-far

solutions. Thus I will concentrate on the comparison of the following mate selection

schemes:
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During each mating event, a binary tournament selection—with probability one

the fitter of the two randomly sampled individuals is chosen—is run to pick out the

first individual, then choosing the mate according to the following three different

schemes:

Tournament Selection (TS): Run the binary tournament selection again to choose

the mate.

Tournament Dissimilar Mating (TDM): Run the binary tournament selection

two more times to choose two candidate partners; then the one more dissimilar

to the first individual is selected for mating.

Random Dissimilar Mating (RDM): Randomly choose two candidate partners;

then the one more dissimilar to the first individual is selected for mating.

I still use the Hamming distance as the similarity metric. Notice that in the mate

selections above if the two candidates are of the same Hamming distance to the first

individual, then one of them is randomly selected.

I show that the results obtained for small problems in Chapter 3 can be scaled to

the original versions of the Royal Road (RR) functions, and to the more complicated

hyperplane-defined functions. I will also show that on non-deceptive functions it

is beneficial to first use the selection pressure from the externally imposed fitness

function to select candidate mates, and then mate with the most dissimilar among

those candidates (i.e., the tournament dissimilar scheme). On the other hand, on a

deceptive test function, the results show that it is more beneficial that the dissimilar

mate is selected from a number of candidates that are picked without the selection

pressure from the externally imposed fitness function (i.e., the random dissimilar

scheme).

In this chapter, the test functions first adopted are the Royal Road functions

(Mitchell, Forrest, and Holland, 1992). I have indicated that the Royal Road functions
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serve as idealized testbeds for comparing effects of different mate selection schemes.

But it is clear that these test functions are inadequate in representing various fitness

landscapes. For further testing these mate selections, I then adopt the hyperplane-

defined functions (HDFs) (Holland, 2000), which increase the complexity of fitness

landscapes such that the test functions are nonseparable, nonlinear, and nonsymmet-

ric. These functions are hard to reverse engineer, but easy for analysis after the fact,

as well.

5.2 Experiments on Royal Road Functions

In Chapter 3 I used several simple versions of the Royal Road functions for in-

vestigating basic properties of mate selections. These simple royal road functions

facilitate the study for effects of distinct mating preferences on GAs. For example,

the results showed that hitchhiking and the founder effect can be suppressed by means

of dissimilarity-based mate selection strategies. In this chapter, I continue the inves-

tigation on effects of mate selections to see if the results obtained in Chapter 3 can

be scaled to problems of larger string length.

The original idea of designing the Royal Road functions was to investigate in

more detail the validity of the Building Block Hypothesis, and examine if GAs are

a robust approach to all problems in which building blocks play a key role (Forrest

and Mitchell, 1993). These functions are called Royal Road (RR) functions because

they form a class of building-block-based functions in which improvements in the

RR domain depend entirely on the discovery and exploitation of building blocks.

Simply stated, the fitness landscapes of the Royal Road functions consist of two

characteristics: the presence of short, low-order, highly-fit schemata and hierarchical

structure which allow these small schemata to repeatedly construct more and more

highly-fit schemata and eventually reach the global optimum.

As discussed in the first use of the simple Royal Road functions (in Section 3.4.1),
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their building-block-based features serve as an idealized testbed for us to observe (1)

how mate selection facilitates distinguishing individuals that carry necessary building

blocks for further improvements, and then (2) how crossover brings these building

blocks residing on separate strings into combination on a single string.

The second goal above was extensively investigated by Mitchell, et al. (1992) and

Forrest et al. (1993). This thesis focuses on the investigation of the first goal. As the

example illustrated in Section 2.1, necessary building blocks for improvements can be

recognized by particular mating preferences; that is, the waiting times for identifying

desirable schemata would be shorter if proper mate preferences are provided. Thus,

I will focus on studying the following question: For a given landscape, what is the

effect of mate selection on the waiting times for desirable schemata to be discovered?

Answering this question in the context of the idealized Royal Road functions is a first

step towards answering them for more general cases.

On the other hand, although the GA was expected to outperform mutation-based

hill climbing search algorithms on the RR functions, the results obtained by Forrest

et al. (1993) showed that the search power of GAs may be impeded by several factors.

For example, if some intermediate stepping stones are much fitter than the primitive

components, hitchhiking generates more severe problems that greatly hamper the

discovery of some necessary schemata. Thus I will study if mate selection can remedy

this problem, as well.

In short, based on the results obtained for small problems in Chapter 3, I gain

insights that indicate dissimilarity-based mate selections could reduce the limitations

imposed by hitchhiking and the founder effect on the GA’s search power in terms

of finding best-so-far solutions. In this section, the original versions of the Royal

Road functions are used to study the questions mentioned above and examine if

some results obtained in Chapter 3 can be scaled to these functions. The three

functions used as testbeds in this section are: Royal Road R1, Royal Road R2, and

90



Table 5.1: Schematic of Royal Road R1.

s1 = 11111111********************************************************; c1 = 8
s2 = ********11111111************************************************; c2 = 8
s3 = ****************11111111****************************************; c3 = 8
s4 = ************************11111111********************************; c4 = 8
s5 = ********************************11111111************************; c5 = 8
s6 = ****************************************11111111****************; c6 = 8
s7 = ************************************************11111111********; c7 = 8
s8 = ********************************************************11111111; c8 = 8

the incompatible Royal Road IR1,
∗ where two of them are non-deceptive (R1 and

R2), and the other is deceptive (IR1). I will show that the tournament dissimilar

mating scheme outperforms the other two on the non-deceptive functions, whereas

the random dissimilar mating scheme is the best strategy that improves the GA’s

search performance on the deceptive function.

5.2.1 Royal Road R1

Royal Road R1 is the simplest of the Royal Road class test functions. Its fit-

ness landscape is composed of eight consecutive building blocks of eight ones each.

Table 5.1 shows the schematic of R1.

This function involves a set of schemata S = {s1, . . . , s8} and the fitness of a bit

string x is defined as

R1(x) =
∑
s∈S

csσs(x),

where each cs is a value assigned to the schema s as defined in the table; σs(x) is

defined as 1 if x is an instance of s and 0 otherwise.

Thus, the fitness value R1(x) is the sum of the coefficients cs corresponding to each

given schema of which x is an instance. The fitness contribution from an intermediate

stepping stone (such as the combination of s1 and s5) is a linear combination of the

∗R1 and R2 are defined in (Mitchell, Forrest, and Holland, 1992); IR1 is a larger version of the
incompatible simple royal road function shown in Table 3.2.
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Table 5.2: Mean function evaluations to the optimum or the number of runs out of
50 in which the optimum is found on R1.

Tournament Selection (TS) 43 runs found the optimum
Tournament Dissimilar Mating (TDM) 14647 (1017)

Random Dissimilar Mating (RDM) 19 runs found the optimum

fitness contribution of the lower-level components. For example, if x contains exactly

two of the order-8 building blocks, R1(x) = 16. Likewise, if x is the global optimum

(64 1’s), R1(111 . . . 1) = 64. R1 is similar to the “plateau” problem described by

Schaffer and Eshelman (1991).

It is clear that Royal Road R1 is a function in which the genes of building blocks

are tightly linked and these building blocks are separable. It was therefore expected

that GAs could perform quite well on such a fitness landscape because crossover can

easily combine various building blocks residing on different strings (Mitchell, Forrest,

and Holland, 1992).

The examination of the effects of mate selection on the Royal Road functions

begins with comparing the time required to find the global optimum for GAs based

on the three mating schemes: tournament selection (TS), the tournament dissimilar

mating (TDM), and the random dissimilar mating (RDM).

For each of the three mating schemes, I conduct experiments of 50 runs based

on one-point crossover rate 1, mutation rate 0.005, population size 128, and the

maximum function evaluations in each run is 64000 (500 generations).

Table 5.2 summarizes the average function evaluations if the GA found the global

optimum in all 50 runs. (The numbers in parentheses are the corresponding standard

errors.†) If this not the case, the number of runs in which the GA found the global

optimum is shown.

These results show that the tournament selection (TS) GA was outperformed by

†Standard error is calculated by: the standard deviation/
√

the number of runs.
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Figure 5.1: Best-so-far performance on R1.

the tournament dissimilar mating (TDM) GA; i.e., the additional dissimilarity-based

mating preference considerably facilitates the GA’s discovery of the optimum. On

the other hand, the random dissimilar mating (RDM) GA was outperformed by the

other two GAs. This agrees with the results obtained in Section 3.4.6, where it was

shown that the TDM GA outperformed the TS GA, and both of them outperformed

the RDM GA on the non-deceptive testbed S1. (In the final part of this section, I

will present the results for a deceptive test function in which RDM is more beneficial

than the other two schemes.)

To further examine the performance difference, Figure 5.1 shows the best-so-far

performance through generations, averaged over 50 runs. Between generation 110

and 120 the TDM GA usually has found the global optimum (see Table 5.2); and the

fitness value of the averaged best-so-far is about 8 points larger than that obtained

for the TS GA, a fitness value of a building block. This indicates that, compared

with TS, TDM is able to significantly reduce the amount of time spent to effectively

recognize the last building block for crossover to combine.
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Table 5.3: The mean function evaluations of first appearance of a schema or schema
combinations of increasing order for R1 (over 50 runs).

TS TDM RDM
Order 8 21 (3) 32 (4) 28 (4)
Order 16 591 (51) 571 (67) 856 (70)
Order 24 1574 (194) 1254 (102) 2391 (184)
Order 32 3267 (476) 2197 (177) 4483 (261)
Order 40 5617 (641) 3457 (262) 8220 (463)
Order 48 12620 (1581) 5586 (424) 15639(1057)
Order 56 20479 (1862) 8949 (589) 49 runs reached
Order 64 43 runs reached 14647 (1017) 19 runs reached

As a next step, we look more closely at the effect of mate selection on the GA’s

performance, considering the effects of different mate preferences on the waiting times

for the various schemata defining the fitness function to be discovered. My intuition

is that the dissimilarity-based test facilitates recognizing different string structures,

which in turn reduces the waiting time for discovering a schema or schema combina-

tions of increasing order.

Table 5.3 displays the average function evaluations over 50 runs at which the

schema (or schema combinations) of a given order is first discovered by the GAs with

and without mate selections, if the GA found the schemata of certain order in all 50

runs before the number of maximum evaluations (64000) is reached. (The numbers

in parentheses are the corresponding standard errors.) If the GA did not find the

given schema order in all 50 runs, the number of runs in which the GA found that

schema order is shown. The results given in the table show that TDM significantly

reduces the waiting time for discovering schemata at each order in the tree. Further

inspection shows that the GA with RDM only reached order 64 in 19 runs during

64000 function evaluations, but the GA with TS can reach that order in 43 runs. This

result shows how the TS GA found the optimum in 43 runs out of 50, and the RDM

GA found the optimum in only 19 runs as shown in Table 5.2.
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All the results so far indicate that on the non-deceptive function R1, TDM is

a better strategy than TS, and TS is better than RDM. In other words, when an

individual undergoes a mating event, it would be beneficial to first use the selection

pressure from its environment (i.e., the externally imposed fitness function R1(x) in

this case) to select candidate mates, and then mate with the most dissimilar among

those candidates (this is what TDM does). On the other hand, if the dissimilar mate

is selected from a number of candidates that are picked without the selection pressure

from the environment (i.e., RDM in this case), then the GA will be outperformed by

the GA without specific mate preference (i.e., TS in this case).

To understand why all this occurs, consider the nature of these mate selection

strategies. Recall that the difference between TDM and TS is that TDM employs

an additional strategy that facilitates distinguishing two strings that are of the same

fitness, but of distinct string structures. This increases the likelihood of locating

necessary, different schemata so as to speed up the discovery process for the optimum.

On the other hand, RDM does not employ the selection pressure toward higher-

fitness individuals while selecting the mating partners. Since R1 is non-deceptive,

the absence of such a selection pressure may in turn slow down the searching process

for the optimum. The testing of this hypothesis is one of the central themes in the

following parts of this thesis.

5.2.2 Royal Road R2

The second Royal Road testbed used is the Royal Road function R2, where the

fitness contributions of certain intermediate stepping stones are much higher. R2 is

illustrated in Figure 5.4. R2 is calculated in the same way as R1: the fitness of a bit

string x is the sum of the coefficients corresponding to each schema (s1–s14) of which

it is an instance. For example, R2(1111111100 . . . 011111111) = 16, since the string

is an instance of both s1 and s8 , but R2(111111111111111100 . . . 0) = 32, since the
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Table 5.4: Schematic of Royal Road R2.

s1 = 11111111********************************************************; c1 = 8
s2 = ********11111111************************************************; c2 = 8
s3 = ****************11111111****************************************; c3 = 8
s4 = ************************11111111********************************; c4 = 8
s5 = ********************************11111111************************; c5 = 8
s6 = ****************************************11111111****************; c6 = 8
s7 = ************************************************11111111********; c7 = 8
s8 = ********************************************************11111111; c8 = 8
s9 = 1111111111111111************************************************; c9 = 16

s10 = ****************1111111111111111********************************; c10 = 16
s11 = ********************************1111111111111111****************; c11 = 16
s12 = ************************************************1111111111111111; c12 = 16
s13 = 11111111111111111111111111111111********************************; c13 = 32
s14 = ********************************11111111111111111111111111111111; c14 = 32

string is an instance of s1, s2 , and s9. Thus, a string’s fitness depends not only on

the number of 8-bit schemata to which the string belongs, but also on their positions

in the string. The fitness of the optimum string 11111111 . . . 1 (64 1’s) is 192, since

the string is an instance of each schema in the tree.

The original motivation for designing Royal Road R2 in (Forrest and Mitchell,

1993) was to examine if the step size of the intermediate stepping stones improves

the GA’s performance by means of allowing the fitness contributions of certain in-

termediate stepping stones to be much higher. However, Forrest et al. found that

the much fitter intermediate stepping stones have adverse effect on the GA’s search

power, since hitchhiking is enhanced and induces more severe problems that greatly

hamper the exploration of the search space.

My objective in this subsection is to examine if the dissimilarity-based mate selec-

tion can remedy this problem. To this end, I first conduct experiments for the GAs

with TS, TDM and RDM, based on Royal Road R2. Then I compare the performance

of the GAs on R2 with that on R1 to see if the dissimilarity-based mate preference

can improve the GA’s performance on R2.
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Figure 5.2: Best-so-far performance on R2.

For each of the three mate selection schemes, the experiments performed are

based on one-point crossover rate 1, mutation rate 0.005, population size 128, and

the number of maximum function evaluations allowed for each run is 64000 (equivalent

to 500 generations).

Figure 5.2 shows the best-so-far performance through generations, averaged over

50 runs. As can be seen, the qualitative difference between the three mate selection

schemes is similar to that in Figure 5.1, although the absolute performance difference

is more obvious.

Based on the results obtained for R1 and R2, it is clear that for these two non-

deceptive functions, the combination of tournament selection and the dissimilar mat-

ing strategy (i.e., TDM) has better performance in terms of finding the best-so-far.

We can take a closer look at the effects of mate selection on the GA’s performance,

again considering the waiting times for the various schemata defining the fitness

function to be discovered.
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Table 5.5: The mean function evaluations of first appearance of a schema or schema
combinations of increasing order for R2 (over 50 runs).

TS TDM RDM
Order 8 46 (9) 40 (9) 31 (4)
Order 16 759 (71) 827 (66) 1668 (177)
Order 24 1511 (109) 1452 (75) 3280 (227)
Order 32 3187 (528) 2657 (248) 8743 (826)
Order 40 7621 (1067) 4799 (491) 14073 (1142)
Order 48 14563 (1687) 7422 (606) 27044 (1769)
Order 56 48 runs reached 10815 (799) 29 runs reached
Order 64 40 runs reached 17515 (1180) 1 runs reached

Table 5.5 displays the average function evaluations over 50 runs at which the

schema (or schema combinations) of a given order is first discovered by the GA, if

the GA found the schemata of certain order in all 50 runs; if this is not the case,

the number of runs in which the GA found that schema order is shown. The results

given in the table show that, as expected, the TDM still significantly reduces the

waiting time for discovering schemata at each order in the tree. Further inspection

shows that the GA with RDM found order 56 in 29 runs, and order 64 in only one

run before 64000 function evaluations are reached, but the GA with TS found order

56 in 48 runs and order 64 in 40 runs. This result accounts for the larger performance

difference in Figure 5.2 than in Figure 5.1.

The next step I am interested in investigating is whether the dissimilarity-based

mating strategy can remedy the more severe problem that hitchhiking imposes on R2

than on R1. To do this, I would need to compare the performance of the GA on R2

with its performance on R1 for each mate selection scheme. By normalizing the best-

so-fars (i.e., dividing these values by the value of the optimal string; e.g., for R1, the

optimal fitness is 64, and for R2 it is 192) and examining the ratio of the normalized

best-so-far of R2 to that of R1, we can compare different mating strategies. If the

ratio approaches 1 for a given mate selection scheme, the degree of hitchhiking on
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Figure 5.3: Ratio of the normalized averaged best-so-far of R2 to that of R1.

R2 is similar to that on R1. This would indicate that this mate selection effectively

suppresses hitchhiking since the corresponding GA’s performance on R2 is not much

different from on R1.

Figure 5.3 illustrates the result for the ratios obtained from Figure 5.2 and Fig-

ure 5.1. Since the GAs’ initial populations for R2 and R1 are randomly generated,

the mean individual fitness in the initial populations of the two cases are almost the

same.‡ But since they are normalized by different values (64 for R1 and 192 for R2),

in the beginning generations the normalized best-so-far of R2 is lower than that of

R1. This results in the lower-than-one ratio curves as shown in the figure. As more

generations go on, the ratio curve gradually picks up. In particular, the ratio curve

corresponding to TDM eventually reaches one, but this situation does not occur to

‡The probability that a randomly generated string contains one of the bottom-level order-8
schemata is 8× 1

28 = 1
32 . Since the initial population has 128 randomly generated individuals, there

are on average 128
32 = 4 total instances of bottom-level schemata in the initial population. Also since

the probability of order-16 schemata’s presence in the initial population can be neglected, compared
to that of order-8 schemata, the expected individual fitness for R1 and R2 are almost the same (i.e.,
4×8
128 = .25).
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the other two schemes. These results show that TDM effectively suppresses hitch-

hiking on R2 than the other two, and thus is the best strategy for the GA on such

“non-deceptive” functions among the three schemes. (In the next subsection, I will

show that RDM is more beneficial than TS and TDM on a “deceptive” test function.)

5.2.3 Incompatible Royal Road IR1

As I have discussed in Section 3.4.2, a variant of the simple royal road function

that consists of incompatible schemata (the test function IS1) would generate the

founder effect—in the presence of incompatible schemata, the first discovered of the

incompatible schemata constrains the future evolutionary avenue and effectively pre-

cludes the testing of the other incompatible schema. Thus further improvements

stem from the founder, making it progressively less likely that the other schema will

influence the search process.

In this subsection, I continue to study the founder effect on the GAs’ performance,

based on an incompatible Royal Road function, IR1. My objective is to examine if

the dissimilarity-based mate selection can improve the GA’s search power. To this

end, I first conduct experiments for the TS, TDM and RDM GAs. Then I examine

the ratio of the normalized best-so-far of IR1 to that of R1 (as used in the preceding

subsection) to see if the dissimilarity-based mate preference can reduce the founder

effect.

Figure 5.6 is the schematic of a royal road function with incompatible schemata,

IR1. IR1 is calculated in the same way as R1: the fitness of a bit string x is the sum

of the coefficients corresponding to each schema (s1–s14) of which it is an instance.

The fitness of the optimum string 11111111 . . . 1 (64 1’s) is 64, since the string is an

instance of each schema in the tree. As can be seen, an incompatible schema may

prevent its counterpart from being tested. For example, if s2 comes to establish a

large portion of the population, s1 may be precluded for testing (although it is fitter
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Table 5.6: Schematic of the incompatible Royal Road IR1.

s1 = 11111111********************************************************; c1 = 8
s2 = 00000000********************************************************; c2 = 5
s3 = ********11111111************************************************; c3 = 8
s4 = ********00000000************************************************; c4 = 5
s5 = ****************11111111****************************************; c5 = 8
s6 = ****************00000000****************************************; c6 = 5
s7 = ************************11111111********************************; c7 = 8
s8 = ************************00000000********************************; c8 = 5
s9 = ********************************11111111************************; c9 = 8

s10 = ********************************00000000************************; c10 = 5
s11 = ****************************************11111111****************; c11 = 8
s12 = ****************************************00000000****************; c12 = 5
s13 = ************************************************11111111********; c13 = 8
s14 = ************************************************00000000********; c14 = 5
s15 = ********************************************************11111111; c15 = 8
s16 = ********************************************************00000000; c16 = 5

than s2). As a consequence, some extent of deceptiveness is introduced that prevents

the GA from finding the global optimum (64 1’s).

For each of the three mate selection schemes, the experiments performed are again

based on one-point crossover rate 1, mutation rate 0.005, population size 128, and

the number of maximum function evaluations allowed for each run is 64000.

Figure 5.4 illustrates the best-so-far performance through generations, averaged

over 50 runs. The qualitative difference between the results for the three mate selec-

tion schemes in this figure is different from those in Figure 5.1 and Figure 5.2. We

see that the best-so-far curves of the TDM and TS GAs go up faster than that of the

RDM GA and soon get stuck, yet the curve of the RDM GA still keeps improving.

Therefore, if experiments are allowed to run longer, RDM could be the best choice in

improving the GA’s performance. If it is not the case, then TDM is more beneficial

than the other two schemes.§

§The degree of deceptiveness can be represented by the values ci for i = 2, 4, 6, . . . , 16. For
example, c2 = 5 and c2 = 1 represent two different versions of the deceptive functions. But the
experiments I have conducted so far show similar qualitative results for the three mate selections.
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Figure 5.4: Best-so-far performance on incompatible IR1.

To understand why this occurs, we can again consider the nature of these mate

selection strategies. Recall that the difference between TDM and TS is that TDM

always chooses dissimilar mates. This generates an increased likelihood that mating

partners come from distant parts of the search space, and the resulting matings could

get offspring out of the local optima. This in turn facilitates the GA’s searching

different parts of the search space, and increases the likelihood of exploring other op-

tima of higher fitnesses. On the other hand, RDM differs from TDM by removing the

selection pressure toward higher-fitness individuals while selecting mating partners.

This can reduce the degree of convergence on certain local optima, and further the

exploration of the search space. Simply stated, both TDM and RDM are able to

facilitate the GA’s exploration of the search space, the difference being that RDM

improves the best-so-far attained at the expense of a slower searching process. This

I suspect this is because the tournament-based selections are used. For other background selection
schemes, such as fitness proportionate selection, the results might show that RDM is not beneficial
on test functions of moderate deceptiveness. This direction will not be explored in this thesis, but
will be deferred for future work.
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Table 5.7: The mean function evaluations of first appearance of a schema or schema
combinations of increasing order for IR1 (over 50 runs).

TS TDM RDM
Order 8 50 (16) 37 (11) 39 (6)
Order 16 674 (108) 657 (152) 970 (130)
Order 24 49 runs reached 1642 (218) 2624 (223)
Order 32 43 runs reached 47 runs reached 5437 (416)
Order 40 33 runs reached 42 runs reached 10044 (800)
Order 48 21 runs reached 33 runs reached 49 runs reached
Order 56 10 runs reached 19 runs reached 46 runs reached
Order 64 1 runs reached 9 runs reached 23 runs reached

phenomenon will be seen throughout the rest of this thesis.

We can further examine the effects of mate selection on the GA’s performance by

comparing the waiting times for the various schemata to be discovered.

Table 5.7 summarizes the average function evaluations over 50 runs at which the

schema (or schema combinations) of a given order is first discovered by the GA, if

it found the schemata of certain order in all 50 runs. (The numbers in parentheses

are the corresponding standard errors.) If this is not the case, the number of runs

in which the GA found that schema order is shown. As can be seen, for lower-order

schemata (e.g., orders 8 and 16), the TDM and TS GAs found them more rapidly

than the RDM GA. But for higher-order schemata, the results show that there are

increasing runs in which the TDM and TS GAs did not find those schemata. For

schemata of order 40, the RDM GA still found them in all 50 runs, yet it is not the

case for the TS and TDM GAs. For orders more than 40 it is clear that RDM has

more runs in which each of these orders is reached than can be reached by TDM and

TS. This result accounts for the performance difference in Figure 5.4.

The next step I am interested in investigating is whether the dissimilarity-based

mating strategy can suppress the founder effect on IR1. To do this, I would need

to compare the performance of the GA on IR1 with its performance on R1 for each
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Figure 5.5: Ratio of the normalized averaged best-so-far of IR1 to that of R1.

mate selection scheme. As in the study for hitchhiking on R2, by normalizing the

best-so-far (i.e., dividing its fitness by the fitness value 64 of the optimal string for

both IR1 and R1) as well as examining the ratio of the normalized best-so-far of IR1

to that of R1, we can compare effects of mating strategies on the GA’s performance. If

the ratio approaches 1 for a given mate selection scheme, it then reduces the founder

effect since the corresponding GA’s performance on IR1 is not much different from

on R1.

Figure 5.5 illustrates the result for the ratios obtained from Figure 5.4 and Fig-

ure 5.1. Since the initial population has 128 randomly generated individuals, for IR1

there are on average 128
32

= 4 total instances of schemata si for i = 1, 3, 5, . . . , 15

and of si for i = 2, 4, 6, . . . , 16, respectively. The mean individual fitness is then

4×8
128

+ 4×5
128

= .40625. But for R1 there are only an average of 4 total instances of the

bottom-level order-8 schemata, and the mean individual fitness is 4×8
128

= .25. Thus

the expected fitness of an individual in the initial population for IR1 is larger than

that for R1. Since for these two cases, the best-so-far are normalized by the same
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value, i.e., 64, which results in the higher-than-one, normalized ratio curves as shown

in the figure. As more generations go on, the GA’s population gradually converges.

This reduces the likelihood of simultaneous presence of two incompatible schemata

and then reduces the values of the ratios. Thereby the ratio curves fall down.

We can further see that when the searching process goes on, say after generation

300, the curve corresponding to the RDM GA approaches 1, yet the curves for TS

and TDM fall below 1. This means that RDM effectively reduces the founder effect

than the other two schemes, and thus is a better strategy for the GA’s search on such

a “deceptive” function.

In the next section, I will continue the study of mate selection based on more

complicated testbeds (the hyperplane-defined functions), where we can see that RDM,

in general, outperforms the other two schemes on such test functions.

5.3 Experiments on Hyperplane Defined Functions

The Royal Road functions previously used are a class of idealized building-block-

based test functions. They facilitate investigating hitchhiking and the founder effect

on the GA. For more testing of the GA’s search power they are clearly inadequate

since fitness landscapes of real problems may be highly nonlinear, nonseparable, and

nonsymmetric. To more rigorously test the GA, Holland (2000) designed a class of

functions—the hyperplane defined functions (HDFs), which capture several charac-

teristics of good test functions (Whitley, Rana, Dzubera, and Mathias, 1996):

• test functions can be generated at random and are difficult to reverse engineer,

so that the algorithms being tested do not inadvertently or deliberately exploit

incidental features;

• test functions are capable of exhibiting an array of landscape-like features

(“hills,” “potholes,” “badlands,” “ridges,” etc.) in controllable proportions,
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so that one can examine what parts of the landscape are exploited by different

genetic operators;

• test functions include all finite functions in the limit.

The Holland-style hyperplane-defined functions can be briefly described as follows.

The search space X over which the hyperplane-defined functions are defined is the

set of all strings of length n (e.g., binary strings). The object is to provide a class of

fitness functions generated entirely by values assigned to a broad range of schemata

(hyperplanes) of different lengths and defining bits. The value (fitness) of each string

is determined by the schemata present in the string; i.e., strings are scored in terms of

the total increments and decrements provided by the schemata containing the string.

With each specific hyperplane-defined function f there is an associated set of

schemata S for determining f(x) (the fitness value of a string x). Each schema s ∈ S

is assigned a fundamental value u(s) that can be either positive or negative. In the

simplest version, the value of an x under f is simply the linear combination of the

fitness contribution of all the schemata of which x is an instance. That is,

f(x) = max{0,
∑

x∈s|s∈S

u(s)}. (5.1)

The set S can be created, via a proper random number generator, with a given

distribution over the set H of all schemata, and the values u(s) can be similarly

assigned with a predefined distribution. Under this setup, the hyperplane-defined

functions can be used as an infinite set of difficult functions. They are then easy to

generate, hard to reverse-engineer, and easy to analyze after the fact by tracking the

dynamics of the building blocks.

The HDFs also satisfy the following additional constraints:

• A set E of elementary schemata is chosen. These schemata are short relative to

string length, but long enough to be rare in a randomly generated population.

106



The schemata in E may overlap and they may be incompatible at some common

loci.

• Pairs of elementary schemata that are close to each other are selected at random

and are combined in pairs to yield higher order schemata. These pairs are in

turn combined in pairs to yield still higher order schemata, and so on until there

are schemata of a length close to string length.

• Some schemata are generated by adding one or more additional defining bits

to some elementary schema, where the additional bits are chosen to match the

locus and value of some nearby elementary schema. The values assigned to

these new schemata are selected to be less than the value of the elementary

schemata involved in their definition, so that they constitute “valleys” that

must be crossed to get from elementary schemata to higher order schemata.

In this section I intend to use three hyperplane-defined functions, with increasing

complexity to investigate effects of mate selection.

5.3.1 Hyperplane-Defined Test Function H1

The first hyperplane-defined function H1 was generated to contain eight elemen-

tary schemata of various lengths for the lowest level of hierarchy and three levels of

hierarchy were built upon, i.e, the equivalent of three levels of Royal Road functions.

There are 29 schemata in total in this function and it can be characterized as follows

(see appendix A for a detailed description of H1):

• There are eight elementary schemata: s1–s8; the value u(si), i = 1 . . . 8, for each

elementary schema is an integer randomly picked from the range of {4, 6}.

• There are four second-level schemata (s9–s12) that are combinants of two ele-

mentary schemata; and there are three third-level schemata (s13–s15) that are
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Table 5.8: Number of runs reached fitness value 80 in 100 runs on H1.

Mate Selection Scheme Number of runs reached 80
Tournament Selection (TS) 38

Tournament Dissimilar Mating (TDM) 55
Random Dissimilar Mating (RDM) 67

combinants of three elementary schemata; the value u(si), i = 9 . . . 15, is an

integer randomly picked from the range of {10, 12}.

• There are fourteen pothole schemata (s16–s29) that are refinements of some

elementary schemata; all u(si), i = 16 . . . 29, is of value -1. (See (Belding, 2001)

for a study of potholes.)

Notice that potholes present difficulty to the GA’s search for higher order schemata

if the potholes are overlapping with them. These potholes would then act like “val-

leys” (as discussed previously) that must be crossed by the GA to further explore the

search space.

The experiments for H1 are conducted based on one-point crossover rate 1, muta-

tion rate 0.005, population size 100, and the number of maximum function evaluations

allowed is 30,000.¶ The GAs with TS, TDM and RDM are tested, and the results

show that the highest best-so-far value reached by the GAs is 80 in all the experi-

ments conducted for H1. (The GA with each mate selection scheme is tested for 100

runs). Table 5.8 summarizes the number of runs out of 100 in which the GA reaches

the best-so-far of 80.

Since the potholes and some incompatible schemata on H1 (e.g., s4 and s5 have an

incompatible allele at the common locus 45) present difficulty such as deceptiveness

to the GA’s search, based on the results obtained in the previous section I expect

¶I use 30,000 function evaluations for H1 because it turned out to serve well for displaying the
difference between the mate selection schemes.
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RDM to outperform the other two schemes. The results in Table 5.8 indeed show

that RDM performs best.

A closer look at detailed schema dynamics illustrates a clear example of the funder

effect that more easily occurs in the GA without dissimilarity-based mating preference

(i.e., the tournament selection GA). In a run of the TS GA the search process was

stuck rather quickly—after finding a string of value 29 at 1377 evaluations, there was

no further improvement through 30,000 evaluations. Investigation of H1 in that run

revealed a pair of overlapping incompatible schemata, each of which was a starting

point for a distinct sequence of improvements leading through higher levels. One of

the sequences “dead-ended” at the string with value 29. In fact, in the 100 runs

conducted for the TS GA, through 30,000 evaluations, the GA was constrained by

the founder effect at a string with value 23 for three runs, and 29 for seven runs.

However, for the RDM GA, the GA was constrained by the founder effect at a string

with value 25 for only one run, and 29 for another one run, as well. These results can

be more clearly illustrated by the best-so-far distribution collected for the 100 runs

of experiments for each mating preference. Figure 5.6 illustrates the histogram that

shows the best-so-far distribution when the number of maximum function evaluation

is reached. The trend in these results shows that the RDM GA tends to locate higher

best-so-fars than the TDM GA, and likewise the TDM GA tends to locate higher best-

so-fars than the TS GA. These results again show us how RDM is more beneficial

than TS and TDM.

We can further examine the GA’s performance in terms of the best-so-far dynam-

ics. Figure 5.7 presents the averaged best-so-far found at each generation. The results

show in more detail how the RDM GA outperforms the other two; and the TDM GA

still outperforms the TS GA. These results are consistent with what I obtained in the

foregoing section. In the rest of this section, I use another two hyperplane-defined test
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Figure 5.6: Histogram for best-so-far performance on H1.
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Figure 5.7: Best-so-far performance on H1.

110



functions for more investigation on the superior performance of RDM to the other

two schemes.

5.3.2 Hyperplane-Defined Test Function H2

The second hyperplane-defined function H2 is a more complicated testbed that

is generated to contain eight elementary schemata, eight levels of hierarchy. More

levels of hierarchy implies that hitchhiking and the founder effect may present more

difficulty to the GA’s search, which allows us to further test RDM’s power. The string

length generated in this case is 200. There are 49 schemata in total in this function

and it is characterized in the following (see appendix B for a detailed description of

H2):

• There are eight elementary schemata: s1–s8; the value u(si), i = 1 . . . 8, for each

elementary schema is an integer randomly picked from the range of {5, 6}.

• There are 27 combinants (s9–s35) in total for levels 2 to 8; the value u(si),

i = 9 . . . 35, is an integer randomly picked from the range of {8, 10}.

• There are fourteen pothole schemata (s36–s49) that are refinements of some

elementary schemata; u(si), i = 36 . . . 49, is an integer randomly picked from

the range of {-2, -1}.

Again, the experiments for H2 are conducted based on one-point crossover rate

1, mutation rate 0.005, population size 300, and the number of maximum function

evaluations allowed is 60000.‖ The GAs with the three mate selection schemes are

tested. The results show that the highest best-so-far value reached by the GAs is 221

in all the experiments conducted for H2. I summarize the number out of 100 runs in

which the GA reached the best-so-far of 221 in Table 5.9.

‖The testbed H2 is generated with higher complexity than H1, and the string length is also
longer than that used for H1; thus I use the larger population size, 300, and maximum function
evaluations, 60000. It turned out that 60000 function evaluations are sufficient for displaying the
difference between the mate selection schemes.
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Table 5.9: Number of runs reached fitness value 221 in 100 runs on H2.

Mate selection scheme Number of runs reached 221
Tournament Selection (TS) 52

Tournament Dissimilar Mating (TDM) 60
Random Dissimilar Mating (RDM) 81

The qualitative difference between the three mate selection schemes shown in

the table is similar to that on H1—RDM still facilitates the GA’s search for higher

best-so-fars.

Figure 5.8 further illustrates the histogram that shows the best-so-far distribution

when the number of maximum function evaluation is reached. The trend in these

results again shows that the RDM GA tends to locate higher best-so-fars than the

TDM GA, and likewise the TDM GA tends to locate higher best-so-fars than the TS

GA. These results also show us how RDM outperforms TS and TDM.

We can further examine the GA’s performance by comparing the averaged best-so-

far dynamics. Figure 5.9 presents the averaged best-so-far found at each generation.

The results again show that the RDM GA outperforms the other two; and TDM

outperforms TS. This is consistent with what I obtained for H1.

5.3.3 Hyperplane-Defined Test Function H3

As the third testbed, a even more complicated hyperplane-defined function H3 is

generated to contain ten elementary schemata and eight levels of hierarchy. The string

length used in this case is 400. My objective is to examine if the results obtained

previously can be scaled to such a long string length case. There are 115 schemata

in total in this function and it can be described by the following characteristics (see

appendix C for a detailed description of H3):

• There are ten elementary schemata: s1–s10; the value u(si), i = 1 . . . 10, for

each elementary schema is an integer randomly picked from the range of {5, 6}.
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Figure 5.8: Histogram for best-so-far performance on H2.
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Table 5.10: Number of runs reached fitness value 430 in 100 runs on H3.

Mate selection scheme Number of runs reached 430
Tournament Selection (TS) 21

Tournament Dissimilar Mating (TDM) 26
Random Dissimilar Mating (RDM) 53

• There are 55 combinants (s11–s65) in total for levels 2 to 8; the value u(si),

i = 11 . . . 65, is an integer randomly picked from the range of {8, 10}.

• There are 50 pothole schemata (s66–s115) that are refinements of some elemen-

tary schemata; u(si), i = 66 . . . 115, is an integer randomly picked from the

range of {-2, -1}.

Again, the experiments for H3 are conducted based on one-point crossover rate

1, mutation rate 0.005, population size 500, and the number of maximum function

evaluations allowed is 100,000.∗∗ The results show that the highest best-so-far value

reached by the GAs is 430 in all the experiments conducted for H3. The number

out of 100 runs in which the GA reached the best-so-far of 430 is summarized in

Table 5.10.

The qualitative difference between the three mate selection schemes shown in the

table is similar to that on H1 and H2—RDM is still more beneficial than the other

two schemes.

Figure 5.10 illustrates the histogram for the best-so-far distribution until the max-

imum function evaluation. Again, the trend in these results shows that the RDM GA

tends to locate higher best-so-fars than the TDM GA, and likewise the TDM GA

∗∗Again, since H3 is more complicated than H2 and the string length used is longer than that
used for H2, I use the larger population size, 500, and maximum function evaluations, 100000. It
turned out that 100000 function evaluations are sufficient for displaying the difference between the
mate selection schemes.
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Figure 5.10: Histogram for best-so-far performance on H3.
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tends to locate higher best-so-fars than the TS GA. Figure 5.11 presents the aver-

aged best-so-far found at each generation. These results again show that the random

dissimilar mating outperforms the other two mate selection schemes.

5.4 Summary and Discussions

In this chapter, I continued the study on the building-block-based Royal Road

test functions. These functions serve as idealized testbeds for comparing effects of

different mating preferences. I demonstrate how hitchhiking and the founder effect

may be suppressed by means of dissimilarity-based mating strategies. I then further

test the mate selection schemes on the hyperplane-defined functions. These functions

extend the complexity of fitness landscapes, which are nonseparable, nonlinear, and

nonsymmetric.

The results obtained show that mate selection is a crucial factor that affects GA’s

exploration of the search space. In short, I gained insights that indicate dissimilarity-

based mate selections would get GAs away from hitchhiking and the founder effect,

and facilitate the GA’s search for further improvements (in terms of finding the best-

so-far).

I have shown that the results obtained for small problems in Chapter 3 can

be scaled to the original versions of the RR functions and the more complicated

hyperplane-defined functions. For problems that are relatively easy to optimize, such

as the two Royal Road R1 and R2, the results show that the tournament dissimi-

lar mating is a better strategy to facilitate the GA’s search power. In other words,

when an individual undergoes a mating event, it is beneficial to first use the selection

pressure from the externally imposed fitness function to select candidate mates, and

then mate with the most dissimilar among those candidates. On the other hand, on

problems that present sufficient difficulty to the GA’s search (e.g., the incompatible,

deceptive Royal Road IR1 and the hyperplane-defined functions H1, H2 and H3) the

116



results show that it is more beneficial that the dissimilar mate is selected from a

number of candidates that are picked without the selection pressure imposed by an

external fitness function. Simply stated, the random dissimilar mating GA outper-

forms the GA with the regular tournament selection or the tournament dissimilar

mating scheme on such difficult problems.

I have briefly discussed possible reasons why all this occurs by comparing the

nature of these mate selection strategies. The additional dissimilar mating preference

of TDM generates an increased likelihood that mating partners come from distant

parts of the search space, and the resulting matings could get offspring out of the

local optima or reduce hitchhiking and the founder effect. This in turn facilitates the

GA’s searching different parts of the search space. The results indeed show that the

TDM GA is able to outperform the TS GA on both the non-deceptive and deceptive

test functions.

On the other hand, RDM differs from TDM by removing the selection pressure

toward higher-fitness individuals while selecting mating partners. This can reduce

the degree of convergence on certain local optima, and further the exploration of the

search space. The results show that, on testbeds that present sufficient difficulty to

the GA’s search, the RDM GA indeed locates higher best-so-far values than the TDM

GA, although its searching process is slower than that of the TDM GA.

Since the royal road and the hyperplane-defined test functions are explicitly con-

structed based on the ideas of building blocks, it is natural to examine if these results

can be scaled to more realistic, non-building-block-based problems. My hypothesis is

that, if the goal is to improve the best-so-far, then on easy problems TDM is more

beneficial; but if problems present sufficient difficulty to the GA’s search, then RDM

is more desired.

In the next chapter, I will test this hypothesis by using several real benchmark

testbeds.
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CHAPTER 6

EMPIRICAL VALIDATION

6.1 Introduction

The results from the previous chapter on the building-block-based testbeds show

that mate selection plays a crucial role in the GA’s search power. Those results

strongly suggest that, if one’s goal is to search for best-so-far solutions (or the global

optimum), then on non-deceptive test functions (e.g., the royal road R1) the GA with

TDM outperforms one with TS, and the GA with TS outperforms one with RDM.

On the other hand, if a test function presents sufficient difficulty due to a high degree

of deceptiveness (e.g., the hyperplane-defined function H1), RDM is more beneficial

than the other two schemes. For either case, the GA with TDM exhibits a higher

(or equivalent) performance level than the GA with TS. In terms of the fitness land-

scape characteristics, the royal road R1 is an example of unimodal testbeds, and the

hyperplane-defined function H1 belongs to the category of multimodal problems. I

conclude that multimodality of the number of peaks in a search space is an important

feature in determining the relative importance of dissimilarity-based mating prefer-

ence. Therefore I predict that TDM would be more beneficial than TS on either

unimodal or multimodal problems, and if a higher degree of multimodality presents

sufficient difficulty to the GA’s search, I expect that the GA using RDM would out-

perform that using the other two schemes.

Since the royal road and the hyperplane-defined test functions are explicitly con-
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structed based on the ideas of building blocks, it is natural to examine if these results

can scale to more realistic, non-building-block-based problems. To this end I chose

several benchmark testbeds that are not explicitly constructed with building blocks

(though building blocks may be embedded) to empirically test my hypothesis. Be-

fore doing so, it is worth discussing several related issues when empirical studies are

employed.

In GA research, it is a common practice to run GAs to some fixed termination cri-

teria, and then to report the results only after termination. For example, if a testbed’s

global optimum is known ahead of time, one can compare the mean function evalu-

ations needed for different GAs to reach a given threshold (or the global optimum).

One can also halt the search until a maximum of 10000 function evaluations, and then

report the value of the best-so-far reached. However, these two methods ignore the

dynamic aspects of a GA, and can lead to overly general conclusions. For example,

in Figure 5.11, if one predetermines a threshold at value 150, it is natural to conclude

that TDM and TS are more beneficial than RDM, since the averaged function eval-

uations taken by the TDM and TS GAs to reach the value of 150 are much smaller

than those by the RDM GA. However, if the threshold is at 300, then it is clear that

the RDM GA is the only one which reaches that value. This shows that conclusions

can often turn out to be surprisingly dependent on the termination criteria, often

reversing if a different cutoff is used. Therefore, inspecting the dynamic aspects of an

GA would give us additional information for reliable judgements.

In addition, from both an engineering and scientific standpoint it is crucial to

include results throughout the running of GAs. For instance, in cases where online

performance is important, one needs to inspect the results over the whole running

time of an GA and then judge if the GA is a good one in terms of the performance

metric employed. Using which criterion depends on the difficulty of a problem, the

goal of an investigation and the context of a search algorithm.
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I have already used the three criteria above to compare the GAs’ performance

in the preceding chapters. In this chapter, I continue employing these criteria while

conducting empirical examination of my hypothesis. If a test function is easy and

its global optimum is known ahead of time, I compare different GAs’ performance in

terms of the mean function evaluations needed for finding the optimum. On simple

test functions this performance measure suffices to illustrate the effects of mate se-

lection. On the other hand, if the global optimum is unknown or difficult to reach,

I halt the search after a maximum of certain function evaluations, and then report

the number of runs in which an GA found the global optimum or the average of the

best-so-fars over the whole running of an GA (as was done in the previous chapters).

Since higher fitness indicates being closer to an optimum, the GA will have to max-

imize the function throughout this chapter. In some cases I will also use auxiliary

techniques to gain deeper understanding for different mate selection schemes, such as

examining the fitness distribution of a population’s individuals to see how individuals

are distributed over areas of the fitness landscape.

My main objective is to test the hypothesis described above as various aspects of

the search space are included. Since the original versions of several testbeds employed

in this chapter were aiming at minimization, proper modifications of these functions

are required for comparing the GA’s performance in terms of maximization. I adopt

six test functions of increasing complexity and difficulty to deepen the understanding

for the effects of mate selection. The first two testbeds I choose are modified versions

of the De Jong test functions F1 and F3 (De Jong, 1975)—the modified F1 is a sphere

model and the modified F3 is step function. These two testbeds are simple unimodal

problems. The third testbed is the generalized Rosenbrock function (ICEO, 1997).∗

It is called Rosenbrock Saddle because a saddle shape is formed by a shallow “ravine”

between two “ridges” merging at the global optimum of the fitness landscape. This

∗De Jong’s test function F2 is a simple, two-dimensional version of this testbed.
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function has many local optima on the ridges and shows some interesting phenomenon

that is worth additional investigation. The fourth testbed is a problem generated from

the idea of optimal control, in which a large portion of the search space is occupied

by a hill, and two clusters of spikes are present at corners. The fifth test function is a

modified version of the Schaffer function F7 (Schaffer, Caruana, Eshelman, and Das,

1989). This testbed is a multimodal with patterns of deep wells and high barriers

that were designed to present more or less difficulty to search by simulated annealing.

Finally I employ Michalewicz’s epistatic function (ICEO, 1997), which is a highly

multimodal, nonlinear and nonseparable testbed.

Many of the characteristics in the testbeds discussed above are considered im-

portant (especially) by evolutionary algorithm practitioners, such as multimodality,

deceptiveness, non-separability, etc. In the next section I start testing the hypothesis

from the simplest case, i.e., the sphere unimodal.

6.2 Modified De Jong Function F1

The first testbed used is a modified version of De Jong’s test function F1:

f(x) = 26.2144N −
N∑

i=1

x2
i , (6.1)

where x = [x1, x2, . . . , xN ]T , −5.12 ≤ xi ≤ 5.12 for 1 ≤ i ≤ N .†

A two-dimensional sketch of this function is presented in Figure 6.1. The X and

Y-axis represent the index of sample points in parameters x1 and x2 that are used to

compute f(x), which is then represented on Z-axis. (This plotting method is applied

to all other testbeds used in this chapter.) As can be seen, this function is a simple,

unimodal problem. In this section, I use five variables (i.e., N=5) for experimental

illustrations, each variable being encoded by 10 bits to cover the range (i.e., 10.24 in

†The original version of the De Jong function F1 is
∑3

i=1 x2
i , and the goal was to minimize f(x).

This function is modified as Equation 6.1, with the constant 26.2144 obtained from the square of
the boundary value, 5.12 (or -5.12), in order to be consistent with the goal of maximization.
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Figure 6.1: Modified, two-dimensional De Jong function F1.

this case) of the values each variable assumes. Each 10 bits is then concatenated to

form a string representing an individual in the population; thus each individual is a

binary string of length 50.

The first several experiments used a population size of 50, ran for 200 generations,

with crossover and mutation rates of 1 and 0.005 respectively. I conducted 50 runs

for each mating preference. Since this testbed’s global optimum is easy to locate, I

first compare the mean function evaluations needed for finding the optimum between

GAs with TS, TDM and RDM if the GA found the global optimum in all 50 runs.‡ If

this is not the case, I record the number of runs in which the GA indeed found global

optimum.

Since my hypothesis is that the TDM GA will outperform the TS GA, and the

TS GA will outperform the RDM GA on a unimodal test problem, I expect that

TDM is the best mating preference for the GA’s search on this unimodal testbed.

Table 6.1 shows the results obtained for these three mate selection schemes (the

‡The results presented here were based on the values reached close to the maximum to 3 digit
accuracy. More digits generate higher precision, but my experiments showed that the qualitative
difference remains the same.
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Table 6.1: Mean function evaluations to the optimum (population size 50).

Mate Selection Scheme Mean Function Evaluations to Optimum
Tournament Selection (TS) 2886 (68)

Tournament Dissimilar Mating (TDM) 2856 (64)
Random Dissimilar Mating (RDM) 2 runs found the global optimum

standard errors are shown in the parentheses). We can see that the GAs with TDM

and TS outperform that with RDM. This partially confirms the hypothesis, but it is

still not clear if the TDM GA could outperform the TS GA in this case.

Table 6.2: Mean function evaluations to the optimum (population size 20).

Mate Selection Scheme Mean Function Evaluations to Optimum
Tournament Selection (TS) 1670 (18)

Tournament Dissimilar Mating (TDM) 1557 (15)
Random Dissimilar Mating (RDM) 69 runs found the global optimum

More experiments revealed that the reason for the similar performance level of the

TDM and TS GAs is that population size 50 is already large enough on this simple

testbed that the performance discrepancy between TDM and TS is suppressed. I

then used a small population size, 20, and reran experiments for 500 runs, hoping to

obtain more reliable results to further compare the performance difference between

TDM and TS. The new results are shown in Table 6.2.

As can be seen, the standard errors in this case are much smaller than in the case

of population size 50, which shows the results are sufficiently reliable and I can be sure

that the TDM GA outperforms the TS GA, since the performance difference between

the two schemes is an average of 120 function evaluations (six generations). This can

be further confirmed in Figure 6.2, where the error bars (95% confidence intervals) are

almost invisible, and we can see the clear difference between the averaged best-so-fars
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Figure 6.4: Two-dimensional De Jong function F3.

corresponding to TDM and TS in earlier generations. When the TS GA found the

optimum, its best-so-far curve then overlapped that of the TDM GA.

Note, however, that eventually the performance curve corresponding to RDM picks

up in later generations (though there is still a very tiny amount difference of .004,

which is almost invisible in this plot), but there are only 69 runs out of 500 in which

the GA found the optimum. A closer inspection shows that the population individuals

of the RDM GA quickly converged to the area near the global optimum, and then

wandered around for a relatively long period. What appears to be happening is that

since this region is relatively flat,§ and since RDM does not use additional selection

pressure toward higher-fitness individuals, this in turn slows down the GA’s search

process.

6.3 De Jong Function F3

§Figure 6.3 illustrates the local gradients of the two-dimensional version of this function. The
length of an arrow represents the magnitude of the corresponding gradient. As can be seen, the
magnitudes of the gradients around the global optimum are much smaller than those at outer
regions, indicating this area is much flatter than other regions.
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Table 6.3: Mean function evaluations to the optimum.

Mate Selection Scheme Mean Function Evaluations to Optimum
Tournament Selection (TS) 2362 (202)

Tournament Dissimilar Mating (TDM) 1665 (109)
Random Dissimilar Mating (RDM) 3598 (145)

The second testbed employed is De Jong’s function F3:

f(x) =
N∑

i=1

integer(xi), (6.2)

where x = [x1, x2, . . . , xN ]T , −5.12 ≤ xi ≤ 5.12 for 1 ≤ i ≤ N . A two-dimensional

sketch of this function is illustrated in Figure 6.4. As can be seen, this function is a

simple, unimodal step function; I expect that the global optimum is easy to locate.

Thus comparing the mean function evaluations needed for locating the optimum is

sufficient to determine the performance difference of different GAs.

In this section, I again use five variables (i.e., N=5) for illustrations, each variable

being encoded by 10 bits. The five blocks of ten bits each are then concatenated to

form a string of length 50. For each mating preference, I conducted experiments of

50 runs, and ran for 200 generations, based on population size 50, with crossover and

mutation rates of 1 and 0.005 respectively.

Our objective is again to examine if my hypothesis holds—i.e., the TDM GA could

outperform the TS GA, and the TS GA could outperform the RDM GA on such a

unimodal test problem. The results are shown in Table 6.3 (the standard errors are

shown in the parentheses), which indeed confirms the hypothesis.

126



6.4 Generalized Rosenbrock Function

The third testbed is the generalized Rosenbrock function:¶

f(x) = 1− 1

98221.9(N − 1)

N−1∑
i=1

[100(x2
i − xi+1)

2 + (1− xi)
2], (6.3)

where x = [x1, x2, . . . , xN ]T , −5.12 ≤ xi ≤ 5.12 for 1 ≤ i ≤ N .‖ A two-dimensional

sketch of this function is presented in Figure 6.5.

As one looks at Figure 6.5, he might expect that this function is easy to optimize

because it looks like a unimodal function. In fact, the seeming smooth surface of this

function is misleading. Figure 6.6 illustrates the local gradients of this function. As

can be seen, two ridges that start from the vicinity of (3, 5.12) and (-3, 5.12) gradually

merge at the global optimum at (0,0). Moreover, the gradients around these two ridges

point away from the global optimum and towards the nearest ridge, except those that

are close to the global optimum. This indicates that points at these areas would be

attracted to the ridges, instead of the global optimum. Therefore, there are, in fact,

many local optima embedded in this function. This in turn presents more difficulty

to search by the GA. Since this function is no longer unimodal, my hypothesis is that

TDM and RDM are more beneficial than TS in facilitating the GA’s search for the

global optimum on this testbed.

In this section, I again use five variables for illustration, and each variable is

encoded by 10 bits so that the string length is 50. Other parameter values remain

the same as those used in the previous section, except that a higher precision of five

digit accuracy is used to examine if the global optimum is found. This is because

the fitness values at the regions around the global optimum are rather close to it and

¶This function was used as a testbed in the Second International Contest on Evolutionary Op-
timization held in the IEEE-ICEC 97 conference (ICEO, 1997). De Jong’s function F2 is a two-
dimensional Rosenbrock function

‖The original version of the generalized Rosenbrock function is f(x) =
∑N−1

i=1 [100(x2
i − xi+1)2 +

(1−xi)2], and the goal was to minimize f(x). This function is normalized (by dividing 98221.9∗(N−
1), where 98221.9 is obtained based on (xi, xi+1) = (−5.12,−5, 12)) and modified as Equation 6.3
for maximization.
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Table 6.4: Number of runs out of 50 in which the optimum is found.

Mate Selection Scheme Number of runs out of 50
Tournament Selection (TS) 18 runs found the global optimum

Tournament Dissimilar Mating (TDM) 29 runs found the global optimum
Random Dissimilar Mating (RDM) 29 runs found the global optimum

thus a higher precision is required for further comparison. I report the results for the

number of runs in which the GA indeed found global optimum in Table 6.4.

The results show that both the TDM and RDM GAs outperform the TS GA, but

at this point it is not clear which of TDM and RDM performs better.

Figure 6.7 illustrates the averaged best-so-far performance, where we can more

clearly see that the RDM GA outperforms the TDM GA.

To understand why all this occurs, consider the nature of these mate selection

strategies. Recall that the difference between TDM and TS is that TDM always

chooses dissimilar mates. This generates an increased likelihood that mating partners

come from distant parts of the search space, and the resulting matings could get

offspring out of the local optima. This in turn facilitates the GA’s searching different

parts of the search space, and increases the likelihood of exploring other optima of

higher fitnesses. On the other hand, RDM differs from TDM by removing the selection

pressure toward higher-fitness individuals while selecting mating partners. This can

reduce the degree of convergence on certain local optima, and further the exploration

of the search space. Simply stated, both TDM and RDM are capable of facilitating

the GA’s exploration of the search space; the only difference is the strategies they

employed.

A closer look at the best-so-far distribution can deepen our understanding of the

difference between these three schemes. Figure 6.8 illustrates the histogram that

shows the best-so-far distribution when the number of maximum function evaluation

(20,000) is reached. The trend in these results shows that the RDM GA tends to
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Figure 6.7: Averaged best-so-far performance on the generalized Rosenbrock function.
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Figure 6.8: Histogram for the best-so-far values on the generalized Rosenbrock func-
tion.
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locate higher best-so-fars than the TDM GA, and likewise the TDM GA tends to

locate higher best-so-fars than the TS GA. This indicates that the best-so-fars found

by the RDM GA are closer to the global optimum than the TDM GA; and the best-

so-fars found by the TDM GA are also closer to the global optimum than the TS

GA. I conclude that the strategy used by RDM for exploring the search space is more

beneficial than that used by TDM on this testbed. Therefore, it is reasonable to

hypothesize that if a problem presents sufficient difficulty to the GA’s search, such as

the large number of local optima present on the generalized Rosenbrock Saddle, RDM

would be a more desired strategy for improving the search of best-so-far solutions. In

the following sections, I will present more results to further support this idea.

6.5 An Optimal Control Test Problem

Optimal Control problems often arise in many different fields of engineering and

sciences. This class of problems has been well studied from both theoretical and

computational perspectives. The models used to describe optimal control problems

almost always involve more or less nonlinearity in nature. This often results in the

existence of multiple local optima in the area of interest. (See Hager and Pardalos

(1998) for a sample of the available material and applications.)

In this section I designed a simple optimal control problem with one state, z, and

two control variables, u1 and u2, for further testing of my hypothesis. The following

is the description of this test problem.

Formulation

Objective function

max
u1,u2

z(tf )
2.

Constraints

d2z(t)

dt2
+ sin(z(t))

dz(t)

dt
+ sin(t)cos(z(t))z(t)3 = sin(t)u2

1 + cos(t)u2
2 + sin(t)u1u2.
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Initial conditions

z(t0) = 2, ż(t0) = 2.

Control

u1 and u2 are constants over the whole time horizon.

Control variable bounds

−5 ≤ ui ≤ 5, i=1, 2.

t ∈[0,1].

A sketch of this function is illustrated in Figure 6.9. The X and Y-axis represent

the index of sample points in parameters u1 and u2 that are used to compute z(tf )
2,

which is then represented on Z-axis. There are clusters of spikes at two corners of

the search space, and a hill that occupies most of the space. The magnified view in

Figure 6.10 shows a clearer picture of the height and area of the hill.

Since on the generalized Rosenbrock function the height differences (i.e., the fitness

differences) between many local optima and the global optimum are rather small,

I design this optimal control problem to enlarge the height differences for further

comparing the three mate selection schemes. As can be seen, the height of the hill

is much lower than that of the spikes, but since it occupies most of the search space,

I expect that most of the population individuals would be attracted to the hilltop.

To improve the GA’s search power, as hypothesized in the last section, the GA can

either employ TDM to choose dissimilar mates that may come from distant parts of

the search space (preferably from the spikes) to get away from the hill, or employ

RDM to decrease the selection pressure in order to reduce the degree of convergence

on local optima.

In this section, each of the two variables is encoded by 30 bits, and thus each

individual is a binary string of length 60. (All other parameter values are the same

as those used in the previous sections.)
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Figure 6.10: Magnified schematic of the optimal control test problem.
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Figure 6.11 shows the averaged best-so-far performance. We can see that RDM

and TDM considerably outperform TS, which validates my hypothesis. We can also

compare the three mate selection schemes by counting the frequency of best-so-fars

attained at the end of each run. Figure 6.12 illustrates the histogram that shows the

best-so-far distribution until the maximum function evaluations. We see that the TS

GA’s population converges on the hilltop (fitness value of 27.01) in more than 30 runs

(out of 50), and the TDM GA can explore more of the search space to extend the

best-so-fars to higher values. The most noticeable in the case of RDM is that the

number of runs in which the GA’s population get trapped on the hill is decreased,

thus generating higher averaged best-so-far values than the other two schemes.

This confirms my hypothesis in the last section that if a problem presents sufficient

difficulty to the GA’s search, RDM would be a more desired strategy for improving

the search of best-so-far solutions.

In the next two sections, I use additional two test functions that are also highly

nonlinear, multimodal, and difficult to optimize to further test the hypothesis.

6.6 Modified Schaffer Function F7

The fifth test function is a modified version of Schaffer’s test function F7 (Schaffer,

Caruana, Eshelman, and Das, 1989). This testbed is a multimodal with patterns of

deep wells and high barriers that were designed to present more or less difficulty to

search by hill climbing.

The test function is:

f(x) = 1.5− (x2
1 + x2

2)
0.25[sin2(50(x2

1 + x2
2)

0.1) + 1],

where −1 ≤ xi ≤ 1 for 1 ≤ i ≤ 2.∗∗ A sketch of this function is displayed in

Figure 6.13. To attain the global optimum at the center of the search space, the GA

∗∗The original Schaffer’s test function F7 is f(x) = (x2
1 +x2

2)
0.25[sin2(50(x2

1 +x2
2)

0.1)+1], and the
goal was to minimize f(x). I modify this function by adding the negative sign for maximization.
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Figure 6.11: Averaged best-so-far performance on the optimal control test problem.
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Figure 6.12: Histogram for the best-so-far values on the optimal control test problem.
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Figure 6.13: Modified Schaffer function F7.

would have to cross over many deep wells and high barriers. Since there are many

local optima in the search space, a simple GA can easily converge on any of them. I

expect that this problem presents sufficient difficulty to the GA’s search.

In this section, each of the two variables is also encoded by 30 bits, and each

individual is a binary string of length 60. All other parameter values are the same

as those used in the previous sections. Figure 6.14 shows the averaged best-so-far

performance, where we can see that the RDM GA substantially outperforms the

TDM GA, and the TDM GA also outperforms the TS GA. This again confirms my

hypothesis. Figure 6.15 further illustrates the histogram that shows the best-so-far

distribution until the number of maximum function evaluation is reached. It is clear

that there are more runs in which the RDM GA attains values that are close to the

global optimum (i.e., 1.5) than the TDM GA. Likewise, there are more runs in which

the TDM GA attains values that are close to the global optimum than the TS GA.

All this shows that the sufficient difficulty presented by the modified Schaffer function

F7 results in the performance advantage of RDM.
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Figure 6.14: Averaged best-so-far performance on the modified Schaffer function F7.

1.25 1.3 1.35 1.4 1.45 1.5
0

5

10

15

20

25
Histogram for best−so−far (population size=50)

N
um

be
r o

r r
un

s 
(T

S)

1.25 1.3 1.35 1.4 1.45 1.5
0

5

10

15

20

25

N
um

be
r o

r r
un

s 
(T

D
M

)

1.25 1.3 1.35 1.4 1.45 1.5
0

5

10

15

20

25

Best−so−far at the end of each run

N
um

be
r o

r r
un

s 
(R

D
M

)

Figure 6.15: Histogram for the best-so-far values on the modified Schaffer function
F7.
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6.7 Epistatic Michalewicz Function

The final testbed employed in this chapter is Michalewicz’s epistatic function

(ICEO, 1997):

f(x) =
N∑

i=1

sin(yi)sin
2m(

iy2
i

π
),

where

yi = xicos
π

6
− xi+1sin

π

6
, if i mod 2 = 1;

yi = xi−1sin
π

6
+ xicos

π

6
, if i mod 2 = 0 and i 6= N ;

yN = xN ,

and m = 10, 0 ≤ xi ≤ π for 1 ≤ i ≤ N .†† A system is lowly (highly) epistatic if the

optimal allele for any locus depends on a small (large) number of alleles at other loci.

The concept of epistasis in nature corresponds to nonlinearity in the context of GA

(Goldberg, 1989). A sketch of a two-dimensional version of this function is shown

in Figure 6.16. This function is a highly multimodal, nonlinear and nonseparable

testbed. Due to the complicated, nonlinear dependence among alleles, I expect that

this problem also presents considerable difficulty to the GA’s search.

In this section, I again use five variables, each variable being encoded by 10 bits.

Each individual is a binary string of length 50. All other parameter values remain

unchanged.

Figure 6.17 shows the averaged best-so-far performance, where we can see that

the RDM GA still outperforms the TDM GA, and the TDM GA still outperforms

††The original Michalewicz’s test function is f(x) = −∑N
i=1 sin(yi)sin2m( iy2

i

π ), which was used as
a testbed in the Second International Contest on Evolutionary Optimization held in the IEEE-ICEC
97 conference, and the goal was to minimize f(x). Again, I remove the negative sign to maximize
the test function.
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Figure 6.16: Modified, two-dimensional Michalewicz function.

the TS GA. This again confirms my hypothesis that RDM is most likely to improve

the GA’s search performance if a test function presents substantial difficulty to the

GA’s search.

Figure 6.18 illustrates the histogram that displays the best-so-far distribution. We

see that there is a trend that RDM facilitates searching for higher best-so-fars than

TDM and TS. This again agrees with my expectation.

6.8 Summary and Discussions

The results obtained in this chapter on the non-building-block-based test functions

confirm the hypothesis that mate selection plays a significant role in the GA’s search

power. These results show that, if one’s goal is to search for best-so-far solutions

(or the global optimum), then on unimodal test functions TDM is the most desired

mate selection strategy in improving the GA’s performance. On the other hand, if a

multimodal test function presents sufficient difficulty, the RDM GA could substan-

tially outperform the TDM and TS GAs. For either case, the TDM GA exhibits a

higher (or equivalent) performance level than the TS GA. Therefore, multimodality
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Figure 6.17: Averaged best-so-far performance on the epistatic Michalewicz function.
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Figure 6.18: Histogram for for the best-so-far values on the epistatic Michalewicz
function.
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of a search space determines the relative importance of dissimilarity-based mating

preferences.

My further understanding of the mate selection schemes used in this chapter is

twofold: (1) by choosing dissimilar mates, TDM increases the likelihood of mating

with individuals from distant parts of the search space to generate offspring that

can get out of the local optima and further exploration of the search space; and

(2) by further removing the selection pressure toward higher-fitness individuals while

selecting mates, RDM can reduce the degree of premature convergence that occurs

when TDM is employed. The benefit of using RDM is manifested in testbeds that

presents sufficient difficulty to the GA’s search.

The results obtained based on the real test functions are encouraging since it means

that the ideas of mate selection proposed in this thesis can be applied to practical

problems. In future work, I hope to develop an analytical analysis to enhance the

understanding of the effects of mate selection. In particular, I will emphasize to

what degree of a problem’s difficulty, in terms of the fitness landscape characteristics,

TDM or RDM is more beneficial than the other two schemes. This is important in

the setting of function optimization, because we would need a guideline to determine

what mate selection strategy to use to more effectively solve the problems at hand.
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CHAPTER 7

IMMUNE SYSTEMS

7.1 Introduction

Our immune system is a complex of cells, molecules and organs which is able

to perform several tasks, such as pattern recognition, learning, memory acquisition,

generation of diversity, generalization and optimization. It protects us from an ex-

traordinarily large variety of viruses, bacteria and other pathogenic organisms. Based

on the immunological metaphor, new computational techniques have been developed

for a better understanding of the system, as well as applications to practical prob-

lems. Among various immune system models, Smith, Forrest, and Perelson (1993)

demonstrated their model, combined with ideas from classifier systems, can maintain

diverse subpopulations of antibodies that recognize antigens. This is important in

understanding the pattern-recognition capability of the immune system in that an

almost limitless number of foreign cells and molecules (antigens) have to be detected

and distinguished from self molecules. The key to this capability is the enormous

diversity of the molecules employed by the immune system.

In the setting of multimodal function optimization, engineering and machine learn-

ing, there are two important issues when the GA is employed: (1) how fast can the GA

discover one or several peaks (or best-so-fars)? And (2) can the GA maintain diverse

subpopulations in different parts of the search space?∗ In Chapter 3, I showed that

∗The first issue was briefly discussed in Section 3.4.3. For the second issue, in addition to
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the dissimilarity-based mate selection facilitates locating a single, best-so-far solution

at the expense of generating lethal offspring; and the similarity-based mate selection

may enhance selection pressure toward highly-fit individuals such that the GA’s pop-

ulation converges rapidly to a certain region of a fitness landscape (if mutation is

turned off). Therefore, for the first question, I would expect the dissimilarity-based

mate selection to improve the GA’s performance based on that metric. On the other

hand, our empirical results showed that simple GAs with the mate selection schemes

are all subject to convergence (i.e., the GAs cannot maintain subpopulations). Thus

for the second question, I intend to employ Smith et al.’s immune system model

which is capable of maintaining population diversity, in order to offer additional in-

sights into how the mate selection schemes compare to traditional selection schemes.

In particular, I am interested in studying how different mate choices affect the capa-

bility of Smith et al’s approach for maintaining subpopulations. Since I have shown

that the dissimilar mating mechanisms are harmful in the sense of producing more

useless hybrids I expect that such mating preferences will reduce the proportions of

individuals in subpopulations. If so, the next question would be to study if reducing

the probability of dissimilar mating (or increasing the probability of similar mating)

can improve the capability for maintaining subpopulations.

In the next section, I illustrate three applications of immunological principles in

order to gain ideas for future research in this field. Then I review Goldberg and

Richardson’s fitness sharing mechanism (1987) that serves as an idealized approach

for maintaining population diversity, and present Smith et al.’s immune system model

to discuss how it implements a form of implicit fitness sharing so as to facilitate

formation of subpopulations. Section 5 presents experimental results that answer the

two questions mentioned above. Finally, this chapter is concluded with the insights

the discussions for the immune systems in Section 7.4, there are some practical problems where
maintaining subpopulations are critical. For example, see (Vlachos, Williams and Gomm, 1999) for
an application of genetic approach to decentralized PI controller tuning for multivariable processes.
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obtained for the mate selection schemes and future research lines.

7.2 Immune System Applications

Models of immunity-based systems are finding increasing applications in the fields

of science and engineering. As of today, several computational algorithms have been

developed and applied to different problems in order to demonstrate how principles

gleaned from the immune system can be used for the design of tools for solving com-

plex tasks. A few representative applications include robotics, control, optimization,

neural network approaches, anomaly detection, agent-based modeling, machine learn-

ing, pattern recognition, to name a few. (Many applications are now introduced as an

emerging area of research, called immune engineering. For a nice review of immune

system applications, see (De Castro and Von Zuben, 2000)).

In this section I briefly discuss three applications of the immune system principles

for possible future research lines. The three applications are relevant to engineering

and computer science—fault diagnosis, control, and computer security.

7.2.1 Fault Diagnosis

Ishida (1993) adopted the insight from the mutual recognition feature of the im-

mune network model (Jerne, 1974) to study fault diagnosis. In his approach, fault

tolerancy was attained by mutual recognition of interconnected units in the studied

plant. The system level recognition was achieved by unit level recognition.

The advantage of his model is that it can do parallel processing and handle in-

complete information and data. In addition, his approach shows the phenomenon

of self-organization, and no feedback loop is necessary in the failure propagation.

Ishida and Mizessyn (1992) presented an application based on this mutual recogni-

tion model to the process instrumentation system of a chemical plant. Using the

relationship among sensors, sensor networks are constructed by bi-directional arcs, in
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which the model is applied to fault diagnosis. The results reported are very promising

and worth further investigation.

7.2.2 Control

In modern control engineering a lot of effort is put into designing robust control

algorithms that can meet the steadily increasing demands for high performance. The

mechanisms of immune-based systems, like clonal selection and affinity maturation,

alone with its network dynamics, suggest successful applications of these metaphors

to the control theory.

Krishnakumar et al. (1995) and Krishnakumar and Neidhoefer (1997, 1999) de-

fined the Immunized Computational Systems (ICS) that used the immune system

metaphor and computational techniques to introduce robustness and adaptability

of biological immune systems to tackle control problems. The system consists of a

hybrid structure whose building blocks, mimicking the immune building blocks, are

composed of artificial neural networks, fuzzy systems and evolutionary algorithms. A

collection of building blocks are combined together in order to generate a population

of computational systems (representing the antigen and antibody equivalents), which

are subject to evolution through selection and genetic operators. In addition, their

immune metaphor focused on the clonal selection principle, as well as the affinity

maturation of the immune response. The strategy was tested on an autonomous

aircraft control problem and the performance is satisfying.

The immune system metaphor has also been applied to sequential control—finding

a suitable execution sequence for a set of actuators so that the system achieves a

desired state from a known initial state. Ootsuki and Sekiguchi (1999) proposed a

method for determining control sequences of a sequential control plant based on the

immune system. They used the Petri Nets formalism and the immune network theory

to develop their model. The determination of control sequences is equivalent to the
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determination of firing sequences for the Petri net models, which are decomposed

into several subproblems. The objective function of each subproblem is set to satisfy

constraints and minimize the objective function of a distributed (immune) network.

Their method was compared to a conventional one, and its performance was superior

for larger problems with distributed characteristics and high degree of freedom in the

components.

7.2.3 Computer Security

Stephanie Forrest et al. at the University of New Mexico are working on a research

project with a long-term goal to build an artificial immune system for computers. The

security of computer systems depends on many activities, such as maintaining the in-

tegrity of data files, detecting unauthorized use of computer facilities, and preventing

the spread of computer viruses. The problem of protecting computer systems from

harmful viruses is viewed as an instance of the more general problem of distinguishing

self (e.g., legitimate users, uncorrupted data) from dangerous other (e.g., unautho-

rized users, viruses, and other malicious agents). This approach is intended to be

complementary to the more traditional cryptographic and deterministic approaches

to computer security.

The virus-detection application of Forrest et al. (1994) employed a negative-

selection algorithm to detect changes in the protected data and program files.† A

number of experiments are performed in a DOS environment with different viruses,

including file-infector and boot sector virus samples. They reported that the method

could easily detect the modification that occurred in the data files because of virus

infection. Compared to other virus detection methods, this algorithm has several

†The negativeselection algorithm developed by Forrest et al. works on principles that are similar
to those of selfnonself discrimination in the immune system, in which the discrimination is achieved
in part by Tcells, which have receptors on their surface that can detect antigens. That is, the
negative-selection algorithm generates detectors randomly, and eliminates the ones that detect self,
so that the remaining Tcells can detect any nonself.
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advantages over the existing change detection methods: it is probabilistic and tunable

in the sense that the probability of detection can be traded off against CPU time. It

can also be distributed to provide high system-wide reliability at low individual cost,

and detect novel viruses that have not previously been identified.

7.3 Fitness Sharing

Fitness sharing was an idea motivated by Holland’s discussion (1975) in which the

number of individuals occupying a niche is limited to that niche’s carrying capacity.

Goldberg and Richardson (1987) then introduced a fitness sharing mechanism that

induces population diversity by penalizing individuals for the presence of similar in-

dividuals in the population. As the number of individuals in a given niche increases,

the availability of resources in the niche decreases, leading to an effective decrease in

the viability of individuals in the niche, and the subsequent decrease in their num-

bers. To maintain a stable population in a niche, the population size must come into

equilibrium with the availability of resources.

To illustrate the effect of sharing resources, consider derating an individual’s fitness

by an amount related to the number of similar individuals in the population. In

particular, an individual’s new shared fitness

f ′i ≡
fi∑N

j=1 sh(dij)
, (7.1)

where dij is the distance between individual i and j, and sh(dij) is the sharing func-

tion:

sh(dij) =





1, if dij = 0;

1− (
dij

σs
)α, if dij < σs;

0, otherwise.

(7.2)

N is the number of individuals in the population, and α and σs are parameters.‡ Both

genotypic and phenotypic distance measures can be employed, the appropriate choice

‡As pointed out by Smith et al. (1993) the condition sh(dij) = 1 for dij = 0 is only implied
in previous fitness sharing studies. It is included here to clarify the limiting case corresponding to
σs = 0.
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Figure 7.1: The sharing function sh(dij) for α=0.5, 1 and 2.

depending on the problem.

Note that since the distance between any individual and itself is zero (i.e., dij=0),

the denominator of Equation 7.2 must be no less than one. If there are more individ-

uals that are close together, Equation 7.1 yields smaller shared fitness.

α is a constant used to regulate the shape of the sharing function. Figure 7.1

illustrates three sharing functions for α=0.5, 1 and 2. σs is the more critical parameter

in the fitness sharing scheme, which represents a cutoff distance, beyond which no

sharing will occur. If σs is small enough that population individuals near a peak may

not be sufficiently affected by other nearby individuals, the complete convergence

to this peak may not occur because the nearby individuals may remain in the final

population. In the limiting case, σs = 0 is such that each individual’s fitness is

divided by the number of identical population members. Let P t
i be the proportion of

individual i in the population at time t. Then under fitness proportionate selection

148



and the shared fitness f ′i , the value of Pi at time t + 1 is

P t+1
i =

P t
i f

′
i∑2l

j=1 P t
j f

′
j

=
P t

i
fi

P t
i∑2l

j=1 P t
j

fj

P t
j

=
fi∑2l

j=1 fj

,

where l is the string length. In this case, selection assigns each individual a population

proportion equal to its fitness relative to the sum of all fitness values in one step,

without any search for peaks.

On the other hand, if σs is too large, and two peaks are within σs of one another,

individuals at these peaks will affect one another’s shared fitnesses, and the result

is that the GA will easily converge to a population that contains one or the other

of these peaks, but not both. In the limiting case where σs equals the maximum

distance between two individuals (i.e., the radius of the search space), the fitness

of each individual fitness is divided by the same value, and the effects of sharing

are eliminated. One can thus expect the GA to converge towards a single type of

individual in the usual fashion.

Fitness sharing is an effective technique for maintaining subpopulations over sev-

eral high-fitness regions of the search space. However, it has two serious limitations:

(1) the peaks must be equidistant or nearly so, and (2) setting σs requires knowledge

about the number of peaks in the search space. These limitations arise from the fact

that fitness sharing is defined explicitly.

Smith, Forrest and Perelson (1993) introduced an algorithm that does not require

explicit construction of the sharing function, and thus avoids the difficulty of ap-

propriately choosing σs. As will be seen in the following discussions, their approach

can implicitly achieve fitness sharing that discovers for itself how many peaks are in

the search space (including the case of not equally spaced peaks), and allocate trials
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appropriately. The idea is to use the metaphor of biological immune systems which

can maintain the diversity needed for it to detect multiple antigens. Then the GA,

combined with the immune system idea, effectively distributes the population over

several high-fitness areas of the search space.

7.4 Binary Immune System Model

The immune system model considered in this chapter is based on a model intro-

duced by Farmer et al. (Farmer et al., 1986), where both antigens and antibodies

are represented by binary strings. It is a simplification from the real biology in

which genes are specified by a four-letter nucleic acid alphabet and recognition be-

tween antibodies and antigens is based on their three-dimensional shapes and physical

properties. In addition, the model does not distinguish between receptors on B cells

and the soluble, secreted form of the receptor, which is antibody. The model includes

only recognition of the idealized antigens by receptors and does not consider how the

immune system neutralizes an antigen once it is recognized. However, this abstract

model of binary strings is rich enough for exploring how a relatively small number of

recognizers (the antibodies) can evolve to recognize a much larger number of different

patterns (the antigens).

In this binary immune system model, recognition is evaluated through a string

matching procedure. The antigens are considered fixed, and a population of N an-

tibodies is evolved to recognize the antigens using a GA. For any set of antigens,

the goal is to obtain an antibody cover—a set of antibodies such that each antigen is

recognized by at least one antibody in the population. Maintaining diverse antibodies

is crucial for obtaining a cover (Smith, Forrest, and Perelson, 1993).

An antibody is said to match an antigen if their bit strings are complementary

(maximally different). Since each antibody may have to match against several dif-

ferent antigens simultaneously, we do not require perfect bit-wise matching. Many
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possible match rules are plausible physiologically (Perelson, 1989). The degree of

match is quantified by a class of match score functions M : Antigen×Antibody → <.

For example, M can simply count the number of complementary bits or M can iden-

tify contiguous regions of complementary bitwise matches within the string. Stadnyk

(Stadnyk, 1987) introduced a function M that computes the lengths li of the comple-

mentary regions, and combines them such that long regions are rewarded more than

short ones. Using this idea, many different specific functions can be defined that are

linear or nonlinear in li.

Smith et al. (1993) adopted a model in which a fixed set of antigens is given, and

the antibodies are initialized either to be completely random (to see if the GA can

learn the correct antibodies) or initially given the answer by setting the population to

include the correct antibodies (to test the stability of the answer). Their mechanism

for fitness scoring is as follows:

1. A single antigen is randomly selected from the antigen population.

2. From the population of N antibodies a randomly selected sample of size σ is

taken without replacement.

3. For each antibody in the sample, match it against the selected antigen, deter-

mine the number of bits that match, and assign it a match score.

4. The antibody in the sample population with the highest match score is deter-

mined. Ties are broken at random.

5. The match score of the winning antibody is added to its fitness. The fitness of

all other antibodies remains unchanged.

6. This process is repeated for C cycles (typically one to three times the number

of antibodies).
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In this scheme, since an antibody’s fitness is increased only if it is the best match-

ing antibody in the sample, the fitness values of antibodies are interdependent. For-

rest et al. (1993) have reported that this scheme can maintain subpopulations of

antibodies that cover a set of antigens.

The next section discusses how this procedure implicitly embodies fitness sharing.

The process is iterated so that each antigen in the antigen population has a chance

of being selected and each antibody in the antibody population will receive a fair

evaluation of its fitness.

7.4.1 Emergent Fitness Sharing in the Immune System Model

In this section, I briefly discuss how Smith et al.’s immune system model implicitly

achieves fitness sharing. Before doing so, some new notation is required:

• dij represents the distance between an antibody i and an antigen j.

• s(dij) represents the match score assigned to antibody i when it is matched

against antigen j.

• αj represents the probability of selecting antigen j for matching.

• fi represents the expected fitness of antibody i.

Note that there are several ways to define the distance between an antibody and

an antigen. For example, dij can be the number of bits of antibody i that are not

complementary to those in antigen j. (Other distance metrics include the 1, 0, #

matching rule for classifiers, and r-contiguous bits (Percus, Percus, and Perelson,

1993), etc.) Under this distance metric, antibody i and antigen j are said to perfectly

match if dij = 0, and partially match if dij 6= 0. The maximum distance possible

between an antibody and an antigen is l, the bit string length.

Consider a given antigen j. Assume that the antibody population is of size N ,

and that it contains Nj(m) antibodies at distance m from antigen j. The probability
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that w antibodies at exactly distance m from antigen j are in a sample of size σ taken

without replacement from this population, p(w; σ,N, Nj(m)), is:

p(w; σ,N, Nj(m)) =

(
Nj(m)

w

)(
N−Nj(m)

σ−w

)
(

N
σ

) , w = 0, 1, ..., σ. (7.3)

As will be seen, the hypergeometric distribution above plays an important role

in understanding how the immune system works. It is thus necessary to understand

how it is obtained. Think of the Nj(m) antibodies at distance m as successes and the

remaining N − Nj(m) antibodies as failures. We choose a sample of size σ without

replacement and are interested in the probability of picking w success elements and

σ − w failure elements. There are
(

N
σ

)
ways of selecting a sample of size σ. The

number of ways of picking w successes from a total of Nj(m) elements corresponds to

the first term of the numerator in Equation 7.3; and the number of ways of picking

σ − w failures from N − Nj(m) elements is the second term of the numerator of

Equation 7.3. Thus, the fraction of times a sample is drawn with w success elements

and σ − w failure elements is shown as Equation 7.3.

Expected fitness of an antibody for the perfect matching case

To introduce the method of calculating the expected fitness of an antibody, Smith

et al. first considered the perfect match case, where an antibody receives a non-zero

score only if it perfectly matches the antigen—i.e., the match score s(dij) 6= 0 if and

only if dij = 0. Let sp be the score received for a perfect match.

Then, Smith et al. derived the calculation for the expected fitness of antibody i

after one cycle:

fi =
spαj

Nj(0)
(1− p(0; σ,N, Nj(0))). (7.4)

Note that the expected fitness for C cycles is Cfi. Since C will be a common factor

for all expected fitness values, it will not have a bearing on the expected behavior

of fitness proportionate selection, and thus it is not considered in the subsequent
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discussion.

Comparing with the fitness sharing scheme, the term spαj roughly corresponds

to the height of the fitness function at point j in the l-dimensional hypercube. The

expected fitness calculation indicates that this value is divided by Nj(0), the number

of individuals at that point. This corresponds to explicit fitness sharing with σs = 0

where an individual’s fitness is divided by the number of identical individuals. The

final hypergeometric term in the calculation is due to the sampling scheme, which

will be clarified in the following discussion.

Expected fitness of an antibody for the partial matching case

Smith et al. then considered the general case in which an antibody receives a

score for a partial match with an antigen at distance dij = m, where m ranges from

0 to l.

The calculation for the expected fitness of antibody i after one cycle is (see Smith

et al. (1993)):

fi =
l∑

m=0

∑

j∈Si(m)

s(dij)αj

Nj(m)
p(0; σ,N, Vj(m))(1− p(0; σ,N − Vj(m), Nj(m))), (7.5)

where Si(m) represents the set of all antigens j at distance m from antibody i (i.e.,

dij = m).

The hypergeometric term p(0; σ,N, Vj(m)) represents the probability that no an-

tibody within distance m-1 of antigen j will be chosen in the sample. The other

term 1−p(0; σ,N−Vj(m), Nj(m)) represents the probability that, given the previous

condition, at least one copy of an antibody at distance m from antigen j will be in

the sample.

To clarify the role of the hypergeometric terms in fitness sharing, two special cases

are first examined. In case of sample size 1, Equation 7.5 yields

fi =
l∑

m=0

∑

j∈Si(m)

s(dij)αj

N
.
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In this case, there is no fitness sharing, and essentially, the relative, expected fitness

values are equivalent to those one would expect under a standard genetic algorithm—

the GA would be expected to converge to a single type of antibody. (Note that this

corresponds to fitness sharing with σs set to a value that spans the entire search

space.)

As a second special case, we consider σ = N . If one assumes that a perfectly

matching antibody exists for every available antigen in the population, the expected

fitness reduces to

fi =
spαi

Ni(0)
.

In this case, each antibody is only divided by its own effective proportion in the

population. Like fitness sharing with σs = 0, the GA with fitness-proportionate

selection would be expected to distribute the population based on relative fitness in

one step, without a search for peak antibodies.

Smith et al. then further showed that the hypergeometric terms, in fact, corre-

spond to a sharing function, and that σ plays a role in the immune system algorithm

that is similar to that of σs in fitness sharing. Its value essentially indicates a cutoff

beyond which no sharing can occur.

7.5 Experimental Results

To illustrate the effects of mate selection on the subpopulation-maintaining ability

of Smith’s immune system model, I use a simple example in which antigen popula-

tions cannot be matched by a single antibody type. Consider an antigen population

that is composed of 50% 000 . . . 000 (all 0’s) and 50% 111 . . . 111 (all 1’s). In order

for an antibody population to recognize these antigens, there would need to be some

antibodies that are all 1’s and others that are all 0’s. Thus, a solution to this prob-

lem requires the GA to maintain two different solutions simultaneously. This is an

example of a “multiple peaks” problem because there are two incompatible solutions
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that are maximally different. Typically, on multiple-peaks problems it is difficult for

simple GAs to distribute the population over several peaks of a fitness landscape (two

different subpopulations of antibodies that match two types of antigens, in this case).

This is because the selection pressure in a simple standard GA usually entails strong

convergence tendency to only one peak. Even without selection pressure, genetic

drift due to sampling error can still lead the GA to (randomly) converge on one of

the peaks (Goldberg and Segrest, 1987).

Forrest et al. (1993) reported in their numerical experiments that the GA with

Smith’s immune-based approach can effectively avoid strong convergence to one peak

and distribute the population over multiple peaks. As has been discussed in the

beginning of this chapter, I expect the mate selection schemes play an important role

in maintaining subpopulations. In particular, my objective is to address the following

questions concerning the capability of the GA, along with Smith’s algorithm, for

maintaining subpopulations:

• Can the GA with different mate selection schemes maintain stable subpopula-

tions of antibodies for recognizing different antigens, or does it always converge

on one peak? If it can maintain diverse subpopulations, then

• Is the proportion of antibodies in each subpopulation being affected by different

mating preferences?§

• Do different mating preferences have influence on the discovery time of antigens?

In light of pattern-recognition, Forrest et al. (1993) pointed out that our immune

§How many antibody representatives must be in the population for an antigen to be identified
is critical. As pointed out by Forrest et al. (1993), the presence of a single antibody is all that
is required to recognize an antigen—a large number of clones that interconvert by mutation is not
required. However, the immune system appears to have evolved redundant recognition. If only one
antibody were used to recognize each antigen, then that antibody may fail to recognize the antigen
when minor changes occur to the antigen. Thus, the immune system seems to use many different
antibodies that recognize the antigen in different ways. In biology, typically tens or hundreds of
different antibodies are found that match an antigen with sufficient strength to be important in an
immune response.
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Table 7.1: Building blocks of antigens.

b1 = 11111***************; s1 =10
b2 = *****11111**********; s2 =10
b3 = **********11111*****; s3 =10
b4 = ***************11111; s4 =10
b5 = 00000***************; s5 =10
b6 = *****00000**********; s6 =10
b7 = **********00000*****; s7 =10
b8 = ***************00000; s8 =10

system needs to recognize bacteria partially on the basis of the existence of certain

unusual molecules that are inherently different from human cells, since many bacteria

have cell walls made from polymers that do not occur in humans. With this as

motivation, I study the GA’s ability to detect common patterns (building blocks) in

the antigen population and adopt the building-block idea in the previous chapters to

calculate fitnesses of antibodies.

Table 7.1 illustrates the building blocks of antigens 111 . . . 1 and 000 . . . 0. An

antibody is said to match an antigen if its bit string is complementary to the antigen

at certain building blocks. Specifically, the match score function Mb is to identify

the building blocks for which an antibody matches an antigen, and then assign corre-

sponding scores to that antibody. For example, given an antigen 111 . . . 1, an antibody

with the first five and the last five bits being all 0’s will receive score s1 + s4 = 20,

since these ten bits are complementary to those of the antigen.

In Section 7.4, I discussed that Smith et al. considered two cases for the score

calculation of antibodies—perfect match and partial match. In case of perfect match,

an antibody receives a non-zero score only if it perfectly matches the antigen. In

contrast, an antibody receives a non-zero score if it partially matches the antigen. In

terms of the distance dij between antibody i and antigen j, partial match indicates

the degree by which an antibody matches an antigen—i.e., the number of bits of
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an antibody that are complementary to the corresponding bits of an antigen. The

degree of match determines the specificity of an antibody. For example, if dij = 0,

the matching is completely specific (that is, the antibody must perfectly match the

antigen), but if dij 6= 0, it is partially matched. The consequence of a partial matching

rule is that there is a trade-off between the number of antibodies used and their

specificity—as the specificity of antibodies increases, so does the number of antibodies

required to achieve a certain level of detection (Hofmeyr and Forrest, 2000).

For the scoring rule discussed in the building-block-based recognition problem, we

can also expand its definition by allowing partial match. In other words, if an antibody

matches an antigen at all the bits of a building block, it is a perfect building-block

match; if not all the bits of that building block are required for matching, it constitutes

a partial building-block match. Therefore, the prefect building-block match case is

that an antibody scores if all of its bits at a building block are complementary to

those of an antigen. On the other hand, a case for partial match could be to allow

an antibody to score with only 80% bits (i.e., 4 bits in case of the building blocks

shown in Table 7.1) of a building block at which it matches an antigen. The result

of this flexible scoring is thus a smaller population size required to achieve a certain

level of recognition performance. In this chapter, I mostly concentrate on this latter

case for calculating antibody scores. (In case of the 100% building-block match, a few

experiments conducted so far show similar qualitative results as the 80% building-

block match case, but it requires much larger population sizes, i.e., much higher

computational costs, to achieve similar levels of performance.)

7.5.1 Effects of Mate Selection on Maintaining Subpopula-
tions

Using Smith et al.’s immune system algorithm (I call it the diversity algorithm

from here on), antibodies are matched against antigens, scored according to their

matching function, and evolved using a conventional GA. Forrest et al. (1993) showed

158



Table 7.2: Illustration of the immune-GA’s mechanism.

1. Randomly generate an initial population of n antibodies.

2. Evaluate antibodies’ fitnesses by the six steps of the diversity algorithm.
(See Section 7.4.)

3. Repeat until n offspring have been created.

a. select a pair of parents for mating by particular selection schemes;
b. apply crossover operator;
c. apply mutation operator.

4. Reset all the new individuals’ fitnesses to zero and

replace the current population with the new population.

5. Go to Step 2 until terminating condition.

that this approach can facilitate maintaining subpopulations of antibodies that rec-

ognize different antigens. To address the questions mentioned in the preceding sub-

section I conduct a series of GA experiments using the diversity algorithm as shown

in Figure 7.2.¶ My first objective is to investigate effects of mate selection on the di-

versity algorithm’s subpopulation-maintaining ability. Unless stated otherwise, these

experiments use an antibody population size of 100, mutation rate of 0.005, and ran

for 150 generations. (Since crossover rates turn out to play a crucial role in main-

taining subpopulations, I also present results based on various crossover rates.) The

antigen population is 50% 000 . . . 0 and 50% 111 . . . 1, and both antigens and antibod-

ies are binary strings of length 20. The number of samples, σ, is 10, which is 10% of

the population size. I choose this value because Smith et al.’s analysis suggests that

¶Since in the diversity algorithm the match score of the winning antibody is continuously accu-
mulated, after each generation the antibodies’ fitness values are expected to be large. Thus at step
4 of Figure 7.2 I reset the fitnesses of the new population’s individuals to zero after each generation
to prevent fitnesses from unlimited increase.
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too small or too large a sample size cannot show fitness sharing’s effect. In addition, as

mentioned in the preceding section, the number of cycles (C) does not have a bearing

on the antibodies’ expected fitnesses, 100 cycles (i.e., population size) used for each

generation turned out to serve well for displaying subpopulation-maintaining results.

Thus the total function evaluations for each run are generations×cycles×sample size,

which equal 150,000.

Figure 7.2 illustrates the experimental results of the diversity algorithm (averaged

over 50 runs), evolved by the GAs with tournament selection (TS), tournament dis-

similar mating (TDM), tournament similar mating (TSM), random dissimilar mating

(RDM) and random similar mating (RSM).

These are the results for the numbers of antibodies that recognize antigens when

all four building blocks are 80% correctly matched. Note that only the curves with

small error bars (95% confidence intervals) can be used for reliable judgements (I will

discuss the reason for the larger error bars shortly), and thus the results for TS, TDM

and RDM can be compared. It is clear that the dissimilar mating schemes, TDM and

RDM, generate less desired antibodies than the regular tournament selection. The

reason is in the following:

When crossover is turned on (crossover rate is 1, in this case), the dissimilarity-

based mate selection increases the probability of producing useless hybrids—e.g.,

given an individual 111 . . . 1, and two candidate mates 111 . . . 1 and 000 . . . 0, the

GAs with the dissimilar mating schemes tend to choose 000 . . . 0 for mating with

111 . . . 1, and the crossing-over between these two strings generates offspring that fall

into the valley between the two peaks. Therefore, TDM and RDM maintain a smaller

fraction of desired antibodies. (In the next subsection, I will discuss the effects of

crossover rates, where we can see that this situation is improved when crossover is

turned off.)
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Figure 7.2: The number of antibodies that correctly recognize antigens.
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On the other hand, we see that TDM generates a larger fraction of desired an-

tibodies than RDM. The difference between theses two schemes is the method of

selecting the second individual for mating—that is, in TDM fitter individuals have

higher probabilities of being selected as mates, but this is not the case for RDM. As

a result, TDM can pick out more individuals from the two peaks than RDM, which

in turn increases the proportion of desired antibodies. This phenomenon can be seen

in the results shown throughout this chapter.

A remedy for the problem of producing useless hybrids would be to reduce dissim-

ilar mating rates. In terms of the example above, the regular tournament selection

confers 111 . . . 1 and 000 . . . 0 with equal probability of being selected for mating,

thereby reducing the likelihood of two mating individuals chosen from the two peaks.

However, if individuals tend to select similar mates, the selection pressure toward

these individuals may be strong enough that the GA’s population converges on only

one peak. If this is the case, the diversity algorithm’s capability for maintaining

subpopulation is degraded.

The larger error bars for TSM and RSM in Figure 7.2 illustrate this situation.

Since TSM and RSM induce too strong a selection pressure, most of the GA’s pop-

ulation members converge to only one peak. At generation 150, the GA with TSM

has 25 (out of 50) runs in which most of the individuals converge to all 1’s, and in 24

(out of 50) runs most of the individuals converge to all 0’s, and there is one run in

which the two peaks are lost. In case of RSM, there are 17 runs in which most of the

individuals converge to all 1’s, 15 runs in which most of the individuals converge to

all 0’s, and 18 runs where the two peaks are lost. Since TSM introduces an additional

selection pressure toward higher-fitness individuals while choosing mates, it is more

likely to pick out fitter individuals than RSM. This in turn results in the observed

larger proportion of desired antibodies obtained based on TSM in Figure 7.2, or in

more runs the GA’s population converges on one peak when the maximum generations
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in each run is limited.

We can use the allelic diversity metric employed in Section 3.3.5 to further compare

the difference between these mate selection schemes. Recall that in Section 3.3.5 the

allelic diversity metric D has a value of 1 when the proportion of 1s at each locus is 0.5

and 0 when all of the loci are fixed to either 0 or 1. Thus, if the population members

are equally distributed over the two peaks (all 1’s and all 0’s), or the population

is truly random, the calculation of D yields 1. By contrast, if all the population

members converge on only one peak, the value of D is 0.

Figure 7.3 shows the averaged allelic diversity calculated for the GAs being tested.

As can be seen that TDM and RDM produce allelic diversity values of between 0.7

and 0.8 when enough generations have passed. These values are relatively close to

1. Since Figure 7.2 shows that TDM and RDM do not generate large proportions

of antibodies that match all 1’s and all 0’s, it implies the populations of the TDM

and RDM GAs are close to a random composition. This is a consequence of using

crossover rate 1. As we shall see in the later discussions, when crossover is turned off,

the diversity algorithm based on TDM and RDM can really maintain subpopulations

over the two peaks, instead of generating a nearly random population.

We can also see that the averaged allelic diversity of TS is smaller than that of

the dissimilarity-based mating schemes. As shown in Figure 7.2, the larger error bars

resulted from TS than from TDM and RDM imply that the antibody population

created by TS is more skewed, thus generating smaller allelic diversity values. (Al-

though TS can produce less offspring that fall into the valley by keeping away from

choosing dissimilar mates, this in turn is likely to generate a more skewed antibody

populations than TDM and RDM.)

On the other hand, since Figure 7.2 showed that the GA’s population is likely

to converge to one peak in cases of TSM and RSM, I would expect the calculations

of allelic diversity metric for similar mating yield values close to 0 as the population
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evolve. Figure 7.3 indeed agrees with our expectation.

A closer look at the micro-level dynamics gives us more understanding for the

effect of similar mating. Figure 7.4 is the experimental results of a typical run for the

number of desired antibodies obtained based on TSM. This figure shows that 000 . . . 0

are drown out by 111 . . . 1 in most of the generations, although they do show up in

few early generations. This is because in TSM, similar individuals are always chosen

as mates (with probability one)—a selection pressure toward similar mates enhances

the convergence on one peak.

Using the schema density plots, Figure 7.5 clearly shows how the schemata of

antibodies 000 . . . 0 are lost.

7.5.2 Effects of Crossover Rate

In the previous subsection, I showed that when crossover is turned on dissimilar

mating can generate more useless hybrids to degrade the GA’s performance with

respect to maintaining antibody subpopulations. It is now natural to ask if reducing

crossover rates would improve this situation. Our expectation is that the absence of

crossover will prevent matings of individuals that are chosen from the two peaks by

dissimilarity-based mating preferences.

Figures 7.6, 7.7 and 7.8 illustrate the results of decreasing crossover rates. In-

cluding Figure 7.2, we see that, for cases of TS, TDM and RDM, smaller crossover

rates indeed reduce the likelihood of producing lower-fitness antibodies—that is, the

proportions of desired antibodies increase as crossover rates decrease.

The effect of crossover rates on similar mating is not as obvious as can be seen on

dissimilar mating. For TSM and RSM, the correct number of desired antibodies is

always maintained at the range of 30 to 40, and the large error bars still imply that

the GAs with the similar mate selection schemes are subject to strong convergence on

one peak, no matter what crossover rates are. Consider the example illustrated in the
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Figure 7.8: The number of antibodies that correctly recognize antigens (crossover
rate = 0).

previous subsection. Given an individual 000 . . . 0 and two candidates 000 . . . 0 and

111 . . . 1, the similar mating GAs always choose 000 . . . 0 for mating with 000 . . . 0.

Thus with or without crossover the mating between two identical individuals will not

generate any difference. This explains why changing crossover rates does not affect

results corresponding to the similar mating cases.

7.5.3 Effects of Mate Selection on the Discovery of Peaks

In the immune system problem considered, thus far I have been concerned with

maintaining desired antibody subpopulations. However, there is another relevant is-

sue I have not yet studied: the formation of the antibody subpopulations requires

these antibodies to be discovered first. This is equivalent to the problem of find-

ing multiple peaks. As has been shown in Chapter 3, the dissimilarity-based mate

selection facilitates locating a single, best-so-far solution. Thus I am interested in in-

vestigating if dissimilar mating is also more beneficial in finding multiple peaks than
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Table 7.3: The mean function evaluations of discovering antibodies 111 . . . 1 and
000 . . . 0 (over 50 runs).

Antibody TS TDM RDM TSM RSM
111 . . . 1 2180 (255) 2300 (322) 2340 (243) 2140 (258) 49 runs reached
000 . . . 0 1860 (212) 1940 (188) 2320 (205) 1920 (240) 2420 (277)

Table 7.4: The number of runs (out of 50) in which antibodies 111 . . . 1 and 000 . . . 0
are discovered.

Antibody TS TDM RDM TSM RSM
111 . . . 1 22 38 42 21 22
000 . . . 0 30 38 40 18 24

traditional selection schemes.

Table 7.3 displays the averaged mean function evaluations (over 50 runs) of discov-

ering 111 . . . 1 and 000 . . . 0 based on population size 100, sample size 10, and crossover

rate 1 (other parameter values are the same as those used previously). These results

show no obvious difference between various mate selection schemes for finding the

two peaks, except that there is one run in which one peak was not found before the

maximum function evaluations 150,000 are reached. A closer inspection again shows

the selection pressure toward similar individuals led that particular run of the GA

to converge on 000 . . . 0, thereby precluding the discovery of 111 . . . 1. However, as

population size decreases, the discrepancies between these mating schemes become

more obvious. Table 7.4 illustrates the results for the number of runs (out of 50) in

which antibodies 111 . . . 1 and 000 . . . 0 are discovered, respectively, based on popu-

lation size 20, sample size 2 and crossover rate 1. (Other parameter values are the

same as those used previously. The number of the total function evaluations in each

run is equal to generation number×cycles×sample size (i.e., 6000).‖) It is clear that

‖Note that if the GA discovered the peak(s), the discovery usually occurs at very early generations.
Thus 6,000 function evaluations are enough for comparing effects of various mate selection schemes.
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the dissimilarity-based mating preferences facilitate locating two peaks. On the other

hand, as discussed previously, similar mating introduces a selection pressure strong

enough that the GAs perform worse than the other schemes in finding the two peaks.

All this confirms with our expectation that the dissimilarity-based mate selection is

beneficial in locating peaks.

7.6 Summary and Discussions

In this chapter, I have described Smith et al.’s immune system model in which

subpopulations can be maintained through specific interactions among the strings. I

have emphasized the performance of the GA in the binary immune system model,

investigating how mate selection affects the GA’s subpopulation-maintaining ability

and the effects of mate selection on the discovery of multiple peaks. Both of these

issues are important in the setting of multimodal function optimization, engineering

and machine learning.

In studying the subpopulation-maintaining problem, the results illustrate that the

dissimilar mating schemes are harmful in the sense of producing more lethal offspring.

Consequently, the proportion of individuals that are representatives of different anti-

bodies is reduced. I then showed that reducing the probability of dissimilar matings in

the traditional selection can remedy this problem. I also hoped to improve the GA’s

performance by further increasing similar mating rates. However, as shown by the re-

sults obtained for TSM and RSM, they introduce a selection pressure strong enough

that the population converges on only one peak. In addition, I have showed that

reducing crossover rates can improve the GA’s performance in maintaining subpop-

ulations when the dissimilar mating and traditional selection schemes are employed,

but this is not the case for the similarity-based mate selection schemes.

In studying the peaks-identifying problem, I showed that the dissimilarity-based

mate selection schemes facilitate locating multiple peaks of the fitness landscape. This
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is an extension of the results obtained in the previous chapters in which dissimilar

mating is shown to be more likely to generate better performance in finding a single,

best-so-far solution.

Since the pattern-recognition strategy in our approach was based on schema de-

tection, it is worth further exploration because in real problems when there are many

more antigens than antibodies, we need to detect common regions. In future work,

I also hope to combine the solutions to the schema detection and multiple peaks

problems in order to scale up our conclusions to realistic ratios of antigens and an-

tibodies. In addition, I would like to develop an analytical analysis to enhance our

understanding for mate selection in the context of the immune-GA-based system.

Finally, I would like to apply the lesson I learned to real applications. For exam-

ple, in the control problem mentioned earlier, the Immunized Computational Systems

in (Krishnakumar and Neidhoefer, 1999) consist of a hybrid structure whose build-

ing blocks, mimicking the immune building blocks, are composed of artificial neural

networks, fuzzy systems and evolutionary algorithms. I hope to incorporate the un-

derstanding for mate selection into the evolutionary-algorithm part to see if I can

improve the system’s performance.
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CHAPTER 8

CONCLUSIONS

8.1 Summary

As I discuss in Chapter 1, the process of information exchange among the GA’s

individuals involves two key components: crossover and mate selection. The central

theme of this thesis concentrates on the investigation of mate selection in GAs. The

goal of this thesis is to propose a framework that facilitates a systematic exploration

of this subject.

Chapter 2 discusses, in depth, my motivation for conducting research on mate

selection. Through a simple example in the context of GA, I indicate potential prob-

lems that occur to a simple implementation of GA. Then in Chapter 3, I propose the

framework, in which by allowing individuals to select mates, fitnesses of candidate

mates are dynamically re-scaled by the individual who chooses them. This results in

a system in which population members’ fitnesses depend on other individuals, rather

than being determined only by the environment. I demonstrate that some biological

phenomena, such as hitchhiking and the founder effect, which generally have signifi-

cant negative effects on the GA’s search power, can be reduced by dissimilar mating

choices. I then proceed to examine performance of GAs with tournament-based mate

selection. The results obtained further illustrate that dissimilarity-based mating pref-

erences indeed help discriminate individuals and improve the GA’s search power. The

results also show that the GA’s performance difference through various mate selection
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schemes can be suppressed by large population sizes.

I also adopt a Markov chain model to analyze GAs as a theoretical basis for similar-

ity and dissimilarity-based mate selection schemes, where I introduce an explicit way

of describing how population individuals’ fitnesses depend on others. Useful insights

are obtained by means of both visual and computational exploration of the models.

I characterize effects of various factors interacting with mate selection schemes, such

as mutation rate, crossover, and difficulty of test functions. The results obtained

enhance our understanding of the GA’s behavior with different mate choices.

In Chapter 5, I continue the study using more complicated test functions for

larger population sizes and string lengths. The investigation concentrates on a class of

idealized building-block-based test functions, and an important hypothesis is drawn—

given three mate selection schemes, TS, TDM and RDM, if one’s goal is to search for

best-so-far solutions (or the global optimum), the GA with TDM exhibits a higher (or

equivalent) performance level than the GA with TS on either unimodal or multimodal

problems. If a higher degree of multimodality presents sufficient difficulty to the

GA’s search, the GA using RDM is expected to outperform that using the other two

schemes.

This hypothesis is then empirically validated in Chapter 6, based on more realistic,

non-building-block-based problems. These positive results are encouraging since it

means that the ideas of mate selection proposed in this thesis can be applied to

practical problems.

Afterwards, in Chapter 7, I discuss a more general setting in the context of mul-

timodal function optimization, engineering and machine learning. Two important

goals are addressed: (1) how fast can the GA discover one or several peaks (or best-

so-fars)? And (2) can the GA maintain diverse subpopulations in different parts of

the search space? Since traditional GAs are subject to strong convergence and cannot

maintain diverse subpopulations, I employ an immune system model which is shown
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to effectively identify multiple peaks and maintain subpopulations. Then my exper-

imental results show that the dissimilarity-based mate selection schemes facilitate

locating multiple peaks of the fitness landscape. This is an extension of the results

obtained in the previous chapters in which dissimilar mating is shown to be more

likely to generate better performance in finding a single, best-so-far solution. On the

other hand, with respect to the second goal, the results illustrate that the dissimilar

mating schemes are harmful in the sense of reducing the proportion of individuals

that are representatives of different antibodies. I then show that reducing the prob-

ability of dissimilar matings in the traditional selection can remedy this problem. I

also show that reducing crossover rates can improve the GA’s performance in main-

taining subpopulations when the dissimilar mating and traditional selection schemes

are employed, but this is not the case for the similarity-based mate selection schemes.

All the results obtained in this chapter shed more light on how the mate selection

schemes compare to traditional selection schemes.

In short, the contribution of the work in this thesis is that the importance of mate

selection in the context of GA is identified, and what mating preferences must be used

to improve the GA’s performance are proposed. These results are obtained through

investigating basic properties, testing an important hypothesis, and employing an

immune-based model to further the understanding of the effects of mate selection on

the GA’s search power.

8.2 Future Work

In Chapter 4, I have discussed that the variance of the waiting times is also an

important metric that can be derived from the mate selection Markov chain models.

In addition, since only the mating schemes based on fitness proportionate selection

are studied in that chapter, in future work I hope to develop a Markov model us-

ing tournament selection to further investigate the effects of tournament-based mate
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selection schemes.

In the hypothesis testing of Chapter 6, although the empirical validation is posi-

tive, I would like to develop an analytic framework in which I can study the degree of

the difficulty a problem presents to the GA’s search. For example, it is worth further

investigating if on unimodal problems, the GA with TDM always exhibits a higher (or

equivalent) performance level than the GA with TS, and if on multimodal problems,

the RDM GA can always achieve higher-level performance in terms of locating best-

so-far solutions. Such a framework is important, since it would facilitate developing

a guideline by which one can decide a better mating strategy for improving the GA’s

search power.

In Chapter 7, since the pattern-recognition strategy in my proposed approach was

based on schema detection, it is worth further exploration because in real problems

when there are many more antigens than antibodies, we need to detect common

regions. In future work, I also hope to combine the solutions to the schema detection

and multiple peaks problems in order to scale up our conclusions to realistic ratios of

antigens and antibodies. In addition, I would like to develop an analytical analysis to

enhance our understanding for mate selection in the context of the immune-GA-based

system.

There are several ways to define the degree of similarity between individuals.

In this thesis, I focus on using the Hamming distance as a similarity metric. The

literature review presented in Section 2.3 illustrates several alternatives for calculating

similarity between population individuals, such as the phenotypic distance used by

Todd and Miller (1991). In future work, I thus hope to study mate selection based

on different similarity metrics.

Since this thesis focuses on fixed-length, linear chromosomes, one of the other

obvious extensions is to variable-length, nonlinear representations, such as those used

in Genetic Programming (Koza, 1992). It is clear that proper similarity metrics
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depend on problem domains and the algorithms used. Therefore, I would also need

to select suitable similarity metrics for different problem domains.

So far the research of mate selection has focused on simple GAs. Since parallel

GAs (PGAs) have been recognized to outperform simple GAs in general, I hope to

continue the study of mate selection for PGAs in future.

In addition, I am also interested in other mate selection schemes; for instance,

self-adaptive mate selection is a promising research line, including the existing tag-

added, template-added mechanisms, and others. Since dissimilar mating schemes in

general provide advantages in searching for the best-so-far solutions, I expect that,

with respect to best-so-far performance, allowing mate selection to evolve would yield

mating schemes that exhibit characteristics of dissimilar mate selection.

Finally, I would like to apply the results obtained in this thesis to practical prob-

lems, such as a manufacturing framework proposed in (Jacobs, 1995), and the other

applications discussed in Section 7.2.
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APPENDIX A

Description of HDF H1

First level (elementary) schemata: s1, s2, s3, s4, s5, s6, s7, s8.

Second level schemata:
s9 = {s3, s5},
s10 = {s5, s6},
s11 = {s6, s7},
s12 = {s7, s8}.

Third level schemata:
s13 = {s2, s3, s5},
s14 = {s3, s5, s6},
s15 = {s6, s7, s8}.

Pothole schemata: s16, s17, s18, s19, s20, s21, s22, s23, s24, s25, s26, s27, s28, s29.

All schemata: s1, s2, s3, s4, s5, s6, s7, s8, s8, s10, s11, s12, s13, s14, s15, s16,
s17, s18, s19, s20, s21, s22, s23, s24, s25, s26, s27, s28, s29.

Loci of all schemata: {s1:{7,9,10,12,13}, s2:{15,17,19}, s3:{30,31,32,33,34,36},
s4:{41,42,43,44,45}, s5:{45,46,47,48}, s6:{50,52,53,54}, s7:{53,54,55,56,57,58,59,60},
s8:{56,57,58,60,61}, s9:{30,31,32,33,34,36,45,46,47,48}, s10:{45,46,47,48,50,52,53,54},
s11:{50,52,53,54,55,56,57,58,59,60}, s12:{53,54,55,56,57,58,59,60,61}, s13:{15,17,19,30,
31,32,33,34,36,45,46,47,48}, s14:{30,31,32,33,34,36,45,46,47,48,50,52,53,54}, s15:{50,
52,53,54,55,56,57,58,59,60,61}, s16:{7,9,10,12,13,15}, s17:{15,17,19,32}, s18:{30,31,
32,33,34,36,45}, s19:{41,42,43,44,45,48}, s20:{45,46,47,48,50}, s21:{50,52,53,54,59},
s22:{53,54,55,56,57,58,59,60,61}, s23:{12,15,17,19}, s24:{17,30,31,32,33,34,36},
s25:{34,41,42,43,44,45}, s26:{42,45,46,47,48}, s27:{46,50,52,53,54},
s28:{50,53,54,55,56,57,58,59,60}, s29:{54,56,57,58,60,61}}.

Alleles of all schemata: {s1:{1,0,0,0,1}, s2:{1,0,0}, s3:{0,0,0,1,1,1}, s4:{0,1,1,1,0},
s5:{1,0,1,0}, s6:{1,1,1,0}, s7:{0,1,1,0,0,1,1,0}, s8:{1,1,1,0,1}, s9:{0,0,0,1,1,1,1,0,1,0},
s10:{1,0,1,0,1,1,1,0}, s11:{1,1,1,0,1,0,0,1,1,0}, s12:{0,1,1,0,0,1,1,0,1}, s13:{1,0,0,0,0,0,
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1,1,1,1,0,1,0}, s14:{0,0,0,1,1,1,1,0,1,0,1,1,1,0}, s15:{1,1,1,0,1,0,0,1,1,0,1}, s16:{1,0,
0,0,1,1}, s17:{1,0,0,0}, s18:{0,0,0,1,1,1,0}, s19:{0,1,1,1,0,0}, s20:{1,0,1,0,1}, s21:{1,1,
1,0,1}, s22:{1,1,1,0,1}, s23:{0,1,1,0,0,1,1,0,1}, s24:{0,1,0,0}, s25:{0,0,0,0,1,1,1},
s26:{1,0,1,1,1,0}, s27:{1,1,0,1,0}, s28:{1,0,1,1,0,0,1,1,0}, s29:{1,1,1,1,0,1}}.

Values of all schemata: {u(s1)=4, u(s2)=4, u(s3)=5, u(s4)=6, u(s5)=4, u(s6)=6,

u(s7)=5, u(s8)=5, u(s9)=11, u(s10)=10, u(s11)=11, u(s12)=12, u(s13)=10, u(s14)=12,

u(s15)=10, u(s16)=-1, u(s17)=-1, u(s18)=-1, u(s19)=-1, u(s20)=-1, u(s21)=-1, u(s22)=-

1, u(s23)=-1, u(s24)=-1, u(s25)=-1, u(s26)=-1, u(s27)=-1, u(s28)=-1, u(s29)=-1}.
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APPENDIX B

Description of HDF H2

Elementary schemata: {s1, s2, s3, s4, s5, s6, s7, s8}.
Corresponding starting loci of elementary schemata : {17, 22, 55, 74, 101, 126,

147, 156}.
Corresponding lengths of elementary schemata: {10, 7, 9, 6, 8, 10, 9, 10}.
Combinant schemata (s9–s35):

{{s1, s2}, {s1, s3}, {s2, s3}, {s2, s4}, {s3, s4}, {s3, s5}, {s4, s5}, {s4, s6}, {s6, s8}, {s7, s8}, {s1, s2, s3}, {s2, s4,

s5}, {s2, s4, s6}, {s4, s6, s8}, {s6, s7, s8}, {s3, s4, s5, s6}, {s4, s5, s6, s8}, {s4, s6, s7, s8}, {s5, s6, s7, s8}, {s2, s3,

s4, s5, s6}, {s2, s4, s6, s7, s8}, {s4, s5, s6, s7, s8}, {s2, s3, s4, s6, s7, s8}, {s2, s4, s5, s6, s7, s8}, {s3, s4, s5, s6,

s7, s8}, {s1, s2, s3, s4, s6, s7, s8}, {s1, s2, s3, s4, s5, s6, s7, s8}}.

Pothole Schemata: s36–s49.

Corresponding loci for each schema si, i = 1 . . . 49: {{18, 19,20, 21, 22, 24, 27}, {23, 24, 25,

29}, {56, 57, 58, 59, 60, 61}, {75, 77}, {102, 103, 105, 106, 107, 109}, {127, 128, 129, 130, 131, 133, 135}, {149, 150,

152, 153, 154, 155, 156}, {157, 159, 161, 162, 164, 165, 166}, {18, 19, 20, 21, 22, 24, 27, 23, 25, 29}, {18, 19, 20, 21,

22, 24, 27, 56, 57, 58, 59, 60, 61}, {23, 24, 25, 29, 56, 57, 58, 59, 60, 61}, {23, 24, 25, 29, 75, 77}, {56, 57, 58, 59, 60,

61, 75, 77}, {56, 57, 58, 59, 60, 61, 102, 103, 105, 106, 107, 109}, {75, 77, 102, 103, 105, 106, 107, 109}, {75, 77, 127,

128, 129, 130, 131, 133, 135}, {127, 128, 129, 130, 131, 133, 135, 157, 159, 161, 162, 164, 165, 166}, {149, 150, 152,

153, 154, 155, 156, 157, 159, 161, 162, 164, 165, 166}, {18, 19, 20, 21, 22, 24, 27, 23, 25, 29, 56, 57, 58, 59, 60, 61},

{23, 24, 25, 29, 75, 77, 102, 103, 105, 106, 107, 109}, {23, 24, 25, 29, 75, 77, 127, 128, 129, 130, 131, 133, 135}, {75,

77, 127, 128, 129, 130, 131, 133, 135, 157, 159, 161, 162, 164, 165, 166}, {127, 128, 129, 130, 131, 133, 135, 149, 150,
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152, 153, 154, 155, 156, 157, 159, 161, 162, 164, 165, 166}, {56, 57, 58, 59, 60, 61, 75, 77, 102, 103, 105, 106, 107, 109,

127, 128, 129, 130, 131, 133, 135}, {75, 77, 102, 103, 105, 106, 107, 109, 127, 128, 129, 130, 131, 133, 135, 157, 159,

161, 162, 164, 165, 166}, {75, 77, 127, 128, 129, 130, 131, 133, 135, 149, 150, 152, 153, 154, 155, 156, 157, 159, 161,

162, 164, 165, 166}, {102, 103, 105, 106, 107, 109, 127, 128, 129, 130, 131, 133, 135, 149, 150, 152, 153, 154, 155, 156,

157, 159, 161, 162, 164, 165, 166}, {23, 24, 25, 29, 56, 57, 58, 59, 60, 61, 75, 77, 102, 103, 105, 106, 107, 109, 127, 128,

129, 130, 131, 133, 135}, {23, 24, 25, 29, 75, 77, 127, 128, 129, 130, 131, 133, 135, 149, 150, 152, 153, 154, 155, 156,

157, 159, 161, 162, 164, 165, 166}, {75, 77, 102, 103, 105, 106, 107, 109, 127, 128, 129, 130, 131, 133, 135, 149, 150,

152, 153, 154, 155, 156, 157, 159, 161, 162, 164, 165, 166}, {23, 24, 25, 29, 56, 57, 58, 59, 60, 61, 75, 77, 127, 128, 129,

130, 131, 133, 135, 149, 150, 152, 153, 154, 155, 156, 157, 159, 161, 162, 164, 165, 166}, {23, 24, 25, 29, 75, 77, 102,

103, 105, 106, 107, 109, 127, 128, 129, 130, 131, 133, 135, 149, 150, 152, 153, 154, 155, 156, 157, 159, 161, 162, 164,

165, 166}, {56, 57, 58, 59, 60, 61, 75, 77, 102, 103, 105, 106, 107, 109, 127, 128, 129, 130, 131, 133, 135, 149, 150, 152,

153, 154, 155, 156, 157, 159, 161, 162, 164, 165, 166}, {18, 19, 20, 21, 22, 24, 27, 23, 25, 29, 56, 57, 58, 59, 60, 61, 75,

77, 127, 128, 129, 130, 131, 133, 135, 149, 150, 152, 153, 154, 155, 156, 157, 159, 161, 162, 164, 165, 166}, {18, 19,

20, 21, 22, 24, 27, 23, 25, 29, 56, 57, 58, 59, 60, 61, 75, 77, 102, 103, 105, 106, 107, 109, 127, 128, 129, 130, 131, 133,

135, 149, 150, 152, 153, 154, 155, 156, 157, 159, 161, 162, 164, 165, 166}, {18, 19, 20, 21, 22, 24, 27, 25}, {23, 24, 25,

29, 59}, {56, 57, 58, 59, 60, 61, 75}, {75, 77, 103}, {102, 103, 105, 106, 107, 109, 130}, {127, 128, 129, 130, 131, 133,

135, 154}, {149, 150, 152, 153, 154, 155, 156, 159}, {21, 23, 24, 25, 29}, {29, 56, 57, 58, 59, 60, 61}, {56, 75, 77}, {75,

102, 103, 105, 106, 107, 109}, {103, 127, 128, 129, 130, 131, 133, 135}, {135, 149, 150, 152, 153, 154, 155, 156}, {152,

157, 159, 161, 162, 164, 165, 166 }}.

Corresponding alleles for each schema si, i = 1 . . . 49: {{0, 1, 0, 0, 1, 0, 1}, {0, 1, 1, 1}, {0,

1, 0, 0, 1, 1}, {1, 1}, {0, 0, 1, 0, 1, 1}, {0, 1, 0, 0, 1, 0, 0}, {1, 1, 0, 0, 1, 0, 1}, {0, 1, 0, 1, 0, 0, 1}, {0, 1, 0, 0, 1, 0, 1,

0, 1, 1}, {0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1}, {0, 1, 1, 1, 0, 1, 0, 0, 1, 1}, {0, 1, 1, 1, 1, 1}, {0, 1, 0, 0, 1, 1, 1, 1}, {0, 1,

0, 0, 1, 1, 0, 0, 1, 0, 1, 1}, {1, 1, 0, 0, 1, 0, 1, 1}, {1, 1, 0, 1, 0, 0, 1, 0, 0}, {0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1}, {1, 1,

0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1}, {0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1}, {0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1}, {0, 1, 1, 1,

1, 1, 0, 1, 0, 0, 1, 0, 0}, {1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1}, {0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0,

1}, {0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0}, {1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1},

{1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1}, {0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1,
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0, 1, 0, 0, 1}, {0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0}, {0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1,

0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1}, {1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1}, {0, 1, 1, 1,

0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1}, {0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0,

1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1}, {0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1,

0, 1, 0, 1, 0, 0, 1}, {0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0,

1}, {0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0,

1}, {0, 1, 0, 0, 1, 0, 1, 1}, {0, 1, 1, 1, 0}, {0, 1, 0, 0, 1, 1, 1}, {1, 1, 0}, {0, 0, 1, 0, 1, 1, 0}, {0, 1, 0, 0, 1, 0, 0, 1}, {1,

1, 0, 0, 1, 0, 1, 1}, {0, 0, 1, 1, 1}, {1, 0, 1, 0, 0, 1, 1}, {0, 1, 1}, {1, 0, 0, 1, 0, 1, 1}, {0, 0, 1, 0, 0, 1, 0, 0}, {0, 1, 1, 0,

0, 1, 0, 1}, {0, 0, 1, 0, 1, 0, 0, 1 }}.

Corresponding value for each schema si (i.e., u(si)), i = 1 . . . 49: {{5, 6, 6, 5, 6, 6, 6, 6,

8, 9, 8, 10, 10, 8, 9, 9, 10, 8, 8, 8, 8, 10, 8, 9, 8, 10, 10, 9, 9, 9, 10, 10, 8, 10, 10, -1, -2, -2, -2, -1, -1, -1, -2, -1, -2, -1,

-1, -2, -2}}.
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APPENDIX C

Description of HDF H3

Elementary schemata: {s1, s2, s3, s4, s5, s6, s7, s8, s9, s10}.
Corresponding starting loci of elementary schemata : {33, 73, 111, 194, 239, 308,

315, 325, 338, 344}.
Corresponding lengths of elementary schemata: {10, 7, 11, 11, 10, 7, 5, 7, 10, 8}.
Combinant schemata (s11–s65):

{{s2, s3}, {s2, s4}, {s3, s4}, {s3, s5}, {s4, s5}, {s4, s6}, {s5, s7}, {s6, s7}, {s7, s8}, {s7, s9}, {s8, s9}, {s8, s10},

{s9, s10}, {s1, s2, s3}, {s1, s3, s4}, {s1, s3, s5}, {s2, s3, s4}, {s2, s3, s5}, {s3, s4, s6}, {s3, s5, s7}, {s4, s5, s7},

{s5, s6, s7}, {s5, s7, s8}, {s5, s7, s9}, {s6, s7, s8}, {s6, s7, s9}, {s6, s8, s9}, {s6, s8, s10}, {s7, s8, s9}, {s7, s8, s10},

{s7, s9, s10}, {s2, s3, s4, s6}, {s2, s4, s5, s7}, {s3, s4, s5, s7}, {s3, s5, s7, s8} , {s3, s5, s7, s9}, {s4, s6, s7, s8},

{s4, s6, s8, s9}, {s5, s6, s8, s9},{s6, s7, s8, s10}, {s6, s7, s9, s10}, {s1, s2, s3, s4, s6}, {s2, s4, s6, s8, s9}, {s3, s4,

s5, s6, s7}, {s3, s4, s5, s7, s8}, {s4, s5, s6, s7, s8}, {s4, s5, s6, s8, s9}, {s6, s7, s8, s9, s10}, {s1, s2, s4, s6, s8, s9},

{s2, s3, s4, s6, s8, s9}, {s4, s5, s6, s7, s8, s9}, {s1, s2, s3, s4, s6, s8, s9}, {s2, s3, s4, s5, s6, s7, s8}, {s2, s3, s4, s5,

s6, s8, s9}, {s1, s2, s3, s4, s5, s6, s8, s9}}.

Pothole Schemata: s66–s115.

Corresponding loci for each schema si, i = 1 . . . 115: {{34, 35, 36, 38, 39, 41, 43}, {74, 76,

78, 79, 80}, {113,114, 115, 116, 117, 119, 121}, {195, 196, 197, 199, 200,201, 203, 204, 205}, {240, 241, 242, 243, 244,

247, 248, 249}, {310, 312, 313, 314, 315}, {317, 318, 319, 320}, {326, 327, 330, 331, 332}, {339, 340, 341, 343, 345,

346, 347}, {345, 346, 347, 349, 350, 351, 352}, {74, 76, 78, 79, 80, 113, 114, 115, 116, 117, 119, 121}, {74, 76, 78,

79, 80, 195, 196, 197, 199, 200, 201, 203, 204, 205}, {113, 114, 115, 116, 117, 119, 121, 195, 196, 197, 199, 200, 201,
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203, 204, 205}, {113, 114, 115, 116, 117, 119, 121, 240, 241, 242, 243, 244, 247, 248, 249}, {195, 196, 197, 199, 200,

201, 203, 204, 205, 240, 241, 242, 243, 244, 247, 248, 249}, {195, 196, 197, 199, 200, 201, 203, 204, 205, 310, 312, 313,

314, 315}, {240, 241, 242, 243, 244, 247, 248, 249, 317, 318, 319, 320}, {310, 312, 313, 314, 315, 317, 318, 319, 320},

{317, 318, 319, 320, 326, 327, 330, 331, 332}, {317, 318, 319, 320, 339, 340, 341, 343, 345, 346, 347}, {326, 327, 330,

331, 332, 339, 340, 341, 343, 345, 346, 347}, {326, 327, 330, 331, 332, 345, 346, 347, 349, 350, 351, 352}, {339, 340,

341, 343, 345, 346, 347, 349, 350, 351, 352}, {34, 35, 36, 38, 39, 41, 43, 74, 76, 78, 79, 80, 113, 114, 115, 116, 117,

119, 121}, {34, 35, 36, 38, 39, 41, 43, 113, 114, 115, 116, 117, 119, 121, 195, 196, 197, 199, 200, 201, 203, 204, 205},

{34, 35, 36, 38, 39, 41, 43, 113, 114, 115, 116, 117, 119, 121, 240, 241, 242, 243, 244, 247, 248, 249}, {74, 76, 78, 79,

80, 113, 114, 115, 116, 117, 119, 121, 195, 196, 197, 199, 200, 201, 203, 204, 205}, {74, 76, 78, 79, 80, 113, 114, 115,

116, 117, 119, 121, 240, 241, 242, 243, 244, 247, 248, 249}, {113, 114, 115, 116, 117, 119, 121, 195, 196, 197, 199, 200,

201, 203, 204, 205, 310, 312, 313, 314, 315}, {113, 114, 115, 116, 117, 119, 121, 240, 241, 242, 243, 244, 247, 248, 249,

317, 318, 319, 320}, {195, 196, 197, 199, 200, 201, 203, 204, 205, 240, 241, 242, 243, 244, 247, 248, 249, 317, 318, 319,

320}, {240, 241, 242, 243, 244, 247, 248, 249, 310, 312, 313, 314, 315, 317, 318, 319, 320}, {240, 241, 242, 243, 244,

247, 248, 249, 317, 318, 319, 320, 326, 327, 330, 331, 332}, {240, 241, 242, 243, 244, 247, 248, 249, 317, 318, 319, 320,

339, 340, 341, 343, 345, 346, 347}, {310, 312, 313, 314, 315, 317, 318, 319, 320, 326, 327, 330, 331, 332}, {310, 312,

313, 314, 315, 317, 318, 319, 320, 339, 340, 341, 343, 345, 346, 347}, {310, 312, 313, 314, 315, 326, 327, 330, 331, 332,

339, 340, 341, 343, 345, 346, 347}, {310, 312, 313, 314, 315, 326, 327, 330, 331, 332, 345, 346, 347, 349, 350, 351,

352}, {317, 318, 319, 320, 326, 327, 330, 331, 332, 339, 340, 341, 343, 345, 346, 347}, {317, 318, 319, 320, 326, 327,

330, 331, 332, 345, 346, 347, 349, 350, 351, 352}, {317, 318, 319, 320, 339, 340, 341, 343, 345, 346, 347, 349, 350, 351,

352}, {74, 76, 78, 79, 80, 113, 114, 115, 116, 117, 119, 121, 195, 196, 197, 199, 200, 201, 203, 204, 205, 310, 312, 313,

314, 315}, {74, 76, 78, 79, 80, 195, 196, 197, 199, 200, 201, 203, 204, 205, 240, 241, 242, 243, 244, 247, 248, 249, 317,

318, 319, 320}, {113, 114, 115, 116, 117, 119, 121, 195, 196, 197, 199, 200, 201, 203, 204, 205, 240, 241, 242, 243, 244,

247, 248, 249, 317, 318, 319, 320}, {113, 114, 115, 116, 117, 119, 121, 240, 241, 242, 243, 244, 247, 248, 249, 317, 318,

319, 320, 326, 327, 330, 331, 332}, {113, 114, 115, 116, 117, 119, 121, 240, 241, 242, 243, 244, 247, 248, 249, 317, 318,

319, 320, 339, 340, 341, 343, 345, 346, 347}, {195, 196, 197, 199, 200, 201, 203, 204, 205, 310, 312, 313, 314, 315, 317,

318, 319, 320, 326, 327, 330, 331, 332}, {195, 196, 197, 199, 200, 201, 203, 204, 205, 310, 312, 313, 314, 315, 326, 327,

330, 331, 332, 339, 340, 341, 343, 345, 346, 347}, {240, 241, 242, 243, 244, 247, 248, 249, 310, 312, 313, 314, 315, 326,
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327, 330, 331, 332, 339, 340, 341, 343, 345, 346, 347}, {310, 312, 313, 314, 315, 317, 318, 319, 320, 326, 327, 330, 331,

332, 345, 346, 347, 349, 350, 351, 352}, {310, 312, 313, 314, 315, 317, 318, 319, 320, 339, 340, 341, 343, 345, 346, 347,

349, 350, 351, 352}, {34, 35, 36, 38, 39, 41, 43, 74, 76, 78, 79, 80, 113, 114, 115, 116, 117, 119, 121, 195, 196, 197,

199, 200, 201, 203, 204, 205, 310, 312, 313, 314, 315}, {74, 76, 78, 79, 80, 195, 196, 197, 199, 200, 201, 203, 204, 205,

310, 312, 313, 314, 315, 326, 327, 330, 331, 332, 339, 340, 341, 343, 345, 346, 347}, {113, 114, 115, 116, 117, 119, 121,

195, 196, 197, 199, 200, 201, 203, 204, 205, 240, 241, 242, 243, 244, 247, 248, 249, 310, 312, 313, 314, 315, 317, 318,

319, 320}, {113, 114, 115, 116, 117, 119, 121, 195, 196, 197, 199, 200, 201, 203, 204, 205, 240, 241, 242, 243, 244, 247,

248, 249, 317, 318, 319, 320, 326, 327, 330, 331, 332}, {195, 196, 197, 199, 200, 201, 203, 204, 205, 240, 241, 242, 243,

244, 247, 248, 249, 310, 312, 313, 314, 315, 317, 318, 319, 320, 326, 327, 330, 331, 332}, {195, 196, 197, 199, 200, 201,

203, 204, 205, 240, 241, 242, 243, 244, 247, 248, 249, 310, 312, 313, 314, 315, 326, 327, 330, 331, 332, 339, 340, 341,

343, 345, 346, 347}, {310, 312, 313, 314, 315, 317, 318, 319, 320, 326, 327, 330, 331, 332, 339, 340, 341, 343, 345, 346,

347, 349, 350, 351, 352}, {34, 35, 36, 38, 39, 41, 43, 74, 76, 78, 79, 80, 195, 196, 197, 199, 200, 201, 203, 204, 205,

310, 312, 313, 314, 315, 326, 327, 330, 331, 332, 339, 340, 341, 343, 345, 346, 347}, {74, 76, 78, 79, 80, 113, 114, 115,

116, 117, 119, 121, 195, 196, 197, 199, 200, 201, 203, 204, 205, 310, 312, 313, 314, 315, 326, 327, 330, 331, 332, 339,

340, 341, 343, 345, 346, 347}, {195, 196, 197, 199, 200, 201, 203, 204, 205, 240, 241, 242, 243, 244, 247, 248, 249, 310,

312, 313, 314, 315, 317, 318, 319, 320, 326, 327, 330, 331, 332, 339, 340, 341, 343, 345, 346, 347}, {34, 35, 36, 38, 39,

41, 43, 74, 76, 78, 79, 80, 113, 114, 115, 116, 117, 119, 121, 195, 196, 197, 199, 200, 201, 203, 204, 205, 310, 312, 313,

314, 315, 326, 327, 330, 331, 332, 339, 340, 341, 343, 345, 346, 347}, {74, 76, 78, 79, 80, 113, 114, 115, 116, 117, 119,

121, 195, 196, 197, 199, 200, 201, 203, 204, 205, 240, 241, 242, 243, 244, 247, 248, 249, 310, 312, 313, 314, 315, 317,

318, 319, 320, 326, 327, 330, 331, 332}, {74, 76, 78, 79, 80, 113, 114, 115, 116, 117, 119, 121, 195, 196, 197, 199, 200,

201, 203, 204, 205, 240, 241, 242, 243, 244, 247, 248, 249, 310, 312, 313, 314, 315, 326, 327, 330, 331, 332, 339, 340,

341, 343, 345, 346, 347}, {34, 35, 36, 38, 39, 41, 43, 74, 76, 78, 79, 80, 113, 114, 115, 116, 117, 119, 121, 195, 196, 197,

199, 200, 201, 203, 204, 205, 240, 241, 242, 243, 244, 247, 248, 249, 310, 312, 313, 314, 315, 326, 327, 330, 331, 332,

339, 340, 341, 343, 345, 346, 347}, {34, 35, 36, 38, 39, 41, 43, 78}, {34, 35, 36, 38, 39, 41, 43, 79}, {34, 35, 36, 38, 39,

41, 43, 78, 79}, {74, 76, 78, 79, 80, 115}, {74, 76, 78, 79, 80, 117}, {74, 76, 78, 79, 80, 115, 117}, {113, 114, 115, 116,

117, 119, 121, 195}, {113, 114, 115, 116, 117, 119, 121, 201}, {113, 114, 115, 116, 117, 119, 121, 195, 201}, {195, 196,

197, 199, 200, 201, 203, 204, 205, 240}, {195, 196, 197, 199, 200, 201, 203, 204, 205, 249}, {195, 196, 197, 199, 200,
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201, 203, 204, 205, 240, 249}, {240, 241, 242, 243, 244, 247, 248, 249, 312}, {310, 312, 313, 314, 315, 317}, {310, 312,

313, 314, 315, 319}, {310, 312, 313, 314, 315, 317, 319}, {317, 318, 319, 320, 331}, {317, 318, 319, 320, 332}, {317,

318, 319, 320, 331, 332}, {326, 327, 330, 331, 332, 340}, {326, 327, 330, 331, 332, 345}, {326, 327, 330, 331, 332, 340,

345}, {339, 340, 341, 343, 345, 346, 347, 349}, {339, 340, 341, 343, 345, 346, 347, 350}, {339, 340, 341, 343, 345, 346,

347, 349, 350}, {39, 74, 76, 78, 79, 80}, {41, 74, 76, 78, 79, 80}, {39, 41, 74, 76, 78, 79, 80}, {74, 113, 114, 115, 116,

117, 119, 121}, {79, 113, 114, 115, 116, 117, 119, 121}, {74, 79, 113, 114, 115, 116, 117, 119, 121}, {115, 195, 196, 197,

199, 200, 201, 203, 204, 205}, {117, 195, 196, 197, 199, 200, 201, 203, 204, 205}, {115, 117, 195, 196, 197, 199, 200,

201, 203, 204, 205}, {204, 240, 241, 242, 243, 244, 247, 248, 249}, {205, 240, 241, 242, 243, 244, 247, 248, 249}, {204,

205, 240, 241, 242, 243, 244, 247, 248, 249}, {248, 310, 312, 313, 314, 315}, {310, 317, 318, 319, 320}, {315, 317, 318,

319, 320}, {310, 315, 317, 318, 319, 320}, {318, 326, 327, 330, 331, 332}, {319, 326, 327, 330, 331, 332}, {318, 319,

326, 327, 330, 331, 332}, {327, 339, 340, 341, 343, 345, 346, 347}, {330, 339, 340, 341, 343, 345, 346, 347}, {327, 330,

339, 340, 341, 343, 345, 346, 347}, {340, 345, 346, 347, 349, 350, 351, 352}, {343, 345, 346, 347, 349, 350, 351, 352},

{340, 343, 345, 346, 347, 349, 350, 351, 352}}.

Corresponding alleles for each schema si, i = 1 . . . 115: {{0, 1, 0, 1, 0, 0, 1}, {1, 1, 0, 0, 0},

{1, 0, 0, 1, 1, 0, 0}, {1, 0, 1, 1, 0, 1, 0, 0, 0}, {1, 1, 0, 0, 0, 0, 0, 1}, {0, 1, 0, 0, 1}, {1, 0, 0, 0}, {1, 0, 0, 0, 0}, {1, 1,

1, 0, 1, 1, 1}, {0, 0, 0, 0, 1, 0, 0}, {1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0}, {1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0}, {1, 0, 0, 1, 1,

0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0}, {1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1}, {1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1}, {1,

0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1}, {1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0}, {0, 1, 0, 0, 1, 1, 0, 0, 0}, {1, 0, 0, 0, 1, 0, 0, 0, 0},

{1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1}, {1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0}, {1, 1, 1, 0, 1, 1, 1, 0,

1, 0, 0}, {0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0}, {0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0,

0}, {0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1}, {1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0},

{1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1}, {1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1}, {1, 0, 0,

1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0}, {1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0}, {1, 1, 0, 0, 0, 0, 0, 1,

0, 1, 0, 0, 1, 1, 0, 0, 0}, {1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0}, {1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1,

1}, {0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1}, {0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1,

0, 1, 1, 1}, {0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0}, {1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1}, {1, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0}, {1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0}, {1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0,
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0, 1, 0, 0, 1}, {1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0}, {1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0,

0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0}, {1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0}, {1, 0, 0, 1, 1, 0, 0,

1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1}, {1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0}, {1, 0, 1,

1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1}, {1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0,

1, 1, 1}, {0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0},

{0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1}, {1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0,

0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1}, {1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1,

0, 0, 1, 1, 0, 0, 0}, {1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0}, {1, 0, 1, 1, 0,

1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0}, {1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1,

0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1}, {0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0}, {0, 1, 0, 1, 0,

0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1}, {1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0,

1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1}, {1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1,

0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1}, {0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0,

0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1}, {1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0,

0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0}, {1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,

1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1}, {0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0,

0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1}, {0, 1, 0, 1, 0, 0, 1, 0}, {0, 1, 0, 1, 0, 0, 1, 0}, {0, 1,

0, 1, 0, 0, 1, 0, 0}, {1, 1, 0, 0, 0, 0}, {1, 1, 0, 0, 0, 1}, {1, 1, 0, 0, 0, 0, 1}, {1, 0, 0, 1, 1, 0, 0, 1}, {1, 0, 0, 1, 1, 0, 0,

1}, {1, 0, 0, 1, 1, 0, 0, 1, 1}, {1, 0, 1, 1, 0, 1, 0, 0, 0, 1}, {1, 0, 1, 1, 0, 1, 0, 0, 0, 1}, {1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1}, {1,

1, 0, 0, 0, 0, 0, 1, 1}, {0, 1, 0, 0, 1, 1}, {0, 1, 0, 0, 1, 0}, {0, 1, 0, 0, 1, 1, 0}, {1, 0, 0, 0, 0}, {1, 0, 0, 0, 0}, {1, 0, 0, 0,

0, 0}, {1, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 1, 1}, {1, 1, 1, 0, 1, 1, 1, 0}, {1, 1, 1, 0, 1, 1, 1, 1}, {1, 1, 1, 0,

1, 1, 1, 0, 1}, {0, 1, 1, 0, 0, 0}, {0, 1, 1, 0, 0, 0}, {0, 0, 1, 1, 0, 0, 0}, {1, 1, 0, 0, 1, 1, 0, 0}, {0, 1, 0, 0, 1, 1, 0, 0}, {1,

0, 1, 0, 0, 1, 1, 0, 0}, {0, 1, 0, 1, 1, 0, 1, 0, 0, 0}, {1, 1, 0, 1, 1, 0, 1, 0, 0, 0}, {0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0}, {0, 1, 1, 0,

0, 0, 0, 0, 1}, {0, 1, 1, 0, 0, 0, 0, 0, 1}, {0, 0, 1, 1, 0, 0, 0, 0, 0, 1}, {0, 0, 1, 0, 0, 1}, {0, 1, 0, 0, 0}, {1, 1, 0, 0, 0}, {0,

1, 1, 0, 0, 0}, {0, 1, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0}, {0, 1, 1, 1, 0, 1, 1, 1}, {0, 1, 1, 1, 0, 1, 1, 1}, {0,

0, 1, 1, 1, 0, 1, 1, 1}, {1, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0}, {1, 0, 0, 0, 0, 0, 1, 0, 0}}.

Corresponding value for each schema si (i.e., u(si)), i = 1 . . . 115: {{6, 6, 6, 5, 5, 5, 5,
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5, 6, 6, 10, 8, 8, 10, 10, 8, 9, 10, 10, 10, 9, 10, 9, 8, 9, 10, 8, 10, 10, 9, 10, 10, 9, 10, 8, 8, 9, 9, 10, 8, 9, 9, 10, 9, 9, 9,

8, 8, 10, 9, 10, 8, 9, 8, 8, 8, 10, 9, 8, 8, 8, 10, 8, 9, 10, -2, -2, -1, -2, -2, -2, -1, -2, -2, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2,

-2, -2, -2, -2, -2, -2, -1, -1, -2, -1, -2, -1, -2, -2, -2, -1, -2, -1, -2, -2, -1, -1, -1, -2, -1, -1, -2, -2, -2, -2, -1}.
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